KI für Ihr Unternehmen – Jetzt Demo buchen

Roboterbewegung in herausforderndem Terrain: Neue Entwicklungen und Technologien

Kategorien:
No items found.
Freigegeben:
September 18, 2024

KI sauber im Unternehmen integrieren: Der 5-Schritte-Plan

Von der ersten Idee bis zur voll integrierten KI-Lösung – strukturiert, sicher und mit messbarem Erfolg

1
🎯

Strategie & Zieldefinition

Wir analysieren Ihre Geschäftsprozesse und identifizieren konkrete Use Cases mit dem höchsten ROI-Potenzial.

✓ Messbare KPIs definiert

2
🛡️

Daten & DSGVO-Compliance

Vollständige Datenschutz-Analyse und Implementierung sicherer Datenverarbeitungsprozesse nach EU-Standards.

✓ 100% DSGVO-konform

3
⚙️

Technologie- & Tool-Auswahl

Maßgeschneiderte Auswahl der optimalen KI-Lösung – von Azure OpenAI bis zu Open-Source-Alternativen.

✓ Beste Lösung für Ihren Fall

4
🚀

Pilotprojekt & Integration

Schneller Proof of Concept mit nahtloser Integration in Ihre bestehende IT-Infrastruktur und Workflows.

✓ Ergebnisse in 4-6 Wochen

5
👥

Skalierung & Team-Schulung

Unternehmensweiter Rollout mit umfassenden Schulungen für maximale Akzeptanz und Produktivität.

✓ Ihr Team wird KI-fit

Inhaltsverzeichnis

    mindverse studio – Ihre Plattform für digitale Effizienz

    Optimieren Sie Prozesse, automatisieren Sie Workflows und fördern Sie Zusammenarbeit – alles an einem Ort.
    Mehr über Mindverse Studio erfahren
    Agile und kontinuierliche Sprünge in diskontinuierlichem Gelände

    Agile und kontinuierliche Sprünge in diskontinuierlichem Gelände: Fortschritte in der Robotik

    Einleitung

    Die Fortbewegung von Robotern in unebenem Gelände stellt eine erhebliche Herausforderung dar. Während viele quadrupedale Roboter bereits in der Lage sind, sich effizient auf kontinuierlichem, aber unebenem Gelände zu bewegen, bleibt die Fortbewegung in diskontinuierlichem Gelände, wie Treppen oder Steinpfaden, eine komplexe Aufgabe. Ein neuer Forschungsansatz fokussiert sich auf agile, kontinuierliche und geländeadaptierte Sprünge, um solche Herausforderungen zu meistern.

    Herausforderungen bei der Fortbewegung in diskontinuierlichem Gelände

    Die Fortbewegung auf diskontinuierlichem Gelände erfordert eine präzise Planung und Ausführung dynamischer Bewegungen. Dies ist notwendig, um Hindernisse wie Lücken oder Unebenheiten zu überwinden. Die dabei entstehenden hochdynamischen Bewegungen führen zu signifikanten Bewegungen der an Bord befindlichen Sensoren, was die Echtzeit-Bildverarbeitung erschwert.

    Visuelle Eingaben und Echtzeit-Verarbeitung

    Um in solchen Umgebungen erfolgreich zu navigieren, müssen Roboter visuelle Eingaben nutzen, um ihre Umgebung zu analysieren und agile Verhaltensweisen zu planen. Diese visuelle Eingabe erfordert robuste Kontrollmethoden, um die Bewegungen des Roboters zu stabilisieren und anzupassen.

    Neue Ansätze: Hierarchisches Lernen und Steuerungsrahmen

    Forscher haben einen hierarchischen Lern- und Steuerungsrahmen entwickelt, um diese Herausforderungen zu bewältigen. Dieser Rahmen umfasst:

    - Einen erlernten Höhenkarten-Prädiktor für robuste Geländeerkennung - Eine auf Verstärkungslernen basierende Bewegungsrichtlinie auf Zentroid-Ebene für vielseitige und geländeadaptierte Planung - Einen modellbasierten Beinsteuerungsmechanismus auf niedriger Ebene für präzises Bewegungstracking

    Sim-to-Real Transfer

    Um den Übergang von der Simulation zur realen Welt zu minimieren, wird die Hardware des Roboters genau modelliert. Dies ermöglicht es dem Roboter, agile und kontinuierliche Sprünge auf menschlichen Treppenstufen und spärlich verteilten Steinen auszuführen.

    Erfolge und Experimente

    Mit diesem Rahmen konnte ein Unitree Go1 Roboter erstmals agile und kontinuierliche Sprünge auf menschlichen Treppenstufen und spärlich verteilten Steinen ausführen. Der Roboter war in der Lage, zwei Treppenstufen in einem Sprung zu überwinden und eine 3,5 Meter lange, 2,8 Meter hohe, 14-stufige Treppe in 4,5 Sekunden zu bewältigen. Diese beeindruckenden Leistungen wurden durch die Kombination von Reinforcement Learning und präzisem Modellieren der Hardware erreicht.

    Weitere Anwendungen

    Der entwickelte Steuerungsrahmen zeigte auch in anderen Parkour-Aufgaben seine Überlegenheit. Der Roboter konnte erfolgreich über einzelne horizontale oder vertikale Diskontinuitäten springen und dabei die Baseline-Modelle übertreffen.

    Verknüpfung mit anderen Forschungsarbeiten

    Ähnliche Ansätze wurden auch in anderen Forschungsarbeiten verfolgt. Beispielsweise präsentiert die Methode der Tiefe-basierte Impulskontrolle (DIC) hochagile visuell geführte Lokomotionsverhalten, welche die Flexibilität des modellfreien Lernens mit expliziter modellbasierter Optimierung der Bodenreaktionskräfte verbindet. Diese Methode wurde sowohl in der Simulation als auch in der realen Welt getestet.

    Fazit

    Die Fortschritte in der Fortbewegung von Robotern in diskontinuierlichem Gelände markieren einen bedeutenden Schritt nach vorne in der Robotik. Durch die Kombination von hierarchischem Lernen und präziser Hardwaremodellierung können Roboter nun dynamische, agile Bewegungen ausführen, die zuvor nicht möglich waren. Diese Entwicklungen eröffnen neue Möglichkeiten für den Einsatz von Robotern in komplexen Umgebungen und stellen einen wichtigen Meilenstein in der Forschung dar.

    Bibliographie

    https://arxiv.org/abs/2110.15344 https://sites.google.com/view/jumpingfrompixels https://openreview.net/forum?id=R4E8wTUtxdl https://www.researchgate.net/publication/355732879_Learning_to_Jump_from_Pixels https://proceedings.mlr.press/v164/margolis22a.html https://deepai.org/publication/learning-to-jump-from-pixels https://www.sciencedirect.com/science/article/pii/S0921889016307709 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9887594/ https://elib.dlr.de/198428/1/T-RO-author-version.pdf https://www.researchgate.net/publication/351765082_Continuous_and_programmable_photomechanical_jumping_of_polymer_monoliths

    Artikel jetzt als Podcast anhören

    Kunden die uns vertrauen:
    Arise Health logoArise Health logoThe Paak logoThe Paak logoOE logo2020INC logoEphicient logo
    und viele weitere mehr!

    Bereit für den nächsten Schritt?

    Das Expertenteam von Mindverse freut sich darauf, Ihnen zu helfen.
    Herzlichen Dank! Deine Nachricht ist eingegangen!
    Oops! Du hast wohl was vergessen, versuche es nochmal.

    🚀 Neugierig auf Mindverse Studio?

    Lernen Sie in nur 30 Minuten kennen, wie Ihr Team mit KI mehr erreichen kann – live und persönlich.

    🚀 Demo jetzt buchen