KI für Ihr Unternehmen – Jetzt Demo buchen

Roboterbewegung in herausforderndem Terrain: Neue Entwicklungen und Technologien

Kategorien:
No items found.
Freigegeben:
September 18, 2024

Artikel jetzt als Podcast anhören

Agile und kontinuierliche Sprünge in diskontinuierlichem Gelände

Agile und kontinuierliche Sprünge in diskontinuierlichem Gelände: Fortschritte in der Robotik

Einleitung

Die Fortbewegung von Robotern in unebenem Gelände stellt eine erhebliche Herausforderung dar. Während viele quadrupedale Roboter bereits in der Lage sind, sich effizient auf kontinuierlichem, aber unebenem Gelände zu bewegen, bleibt die Fortbewegung in diskontinuierlichem Gelände, wie Treppen oder Steinpfaden, eine komplexe Aufgabe. Ein neuer Forschungsansatz fokussiert sich auf agile, kontinuierliche und geländeadaptierte Sprünge, um solche Herausforderungen zu meistern.

Herausforderungen bei der Fortbewegung in diskontinuierlichem Gelände

Die Fortbewegung auf diskontinuierlichem Gelände erfordert eine präzise Planung und Ausführung dynamischer Bewegungen. Dies ist notwendig, um Hindernisse wie Lücken oder Unebenheiten zu überwinden. Die dabei entstehenden hochdynamischen Bewegungen führen zu signifikanten Bewegungen der an Bord befindlichen Sensoren, was die Echtzeit-Bildverarbeitung erschwert.

Visuelle Eingaben und Echtzeit-Verarbeitung

Um in solchen Umgebungen erfolgreich zu navigieren, müssen Roboter visuelle Eingaben nutzen, um ihre Umgebung zu analysieren und agile Verhaltensweisen zu planen. Diese visuelle Eingabe erfordert robuste Kontrollmethoden, um die Bewegungen des Roboters zu stabilisieren und anzupassen.

Neue Ansätze: Hierarchisches Lernen und Steuerungsrahmen

Forscher haben einen hierarchischen Lern- und Steuerungsrahmen entwickelt, um diese Herausforderungen zu bewältigen. Dieser Rahmen umfasst:

- Einen erlernten Höhenkarten-Prädiktor für robuste Geländeerkennung - Eine auf Verstärkungslernen basierende Bewegungsrichtlinie auf Zentroid-Ebene für vielseitige und geländeadaptierte Planung - Einen modellbasierten Beinsteuerungsmechanismus auf niedriger Ebene für präzises Bewegungstracking

Sim-to-Real Transfer

Um den Übergang von der Simulation zur realen Welt zu minimieren, wird die Hardware des Roboters genau modelliert. Dies ermöglicht es dem Roboter, agile und kontinuierliche Sprünge auf menschlichen Treppenstufen und spärlich verteilten Steinen auszuführen.

Erfolge und Experimente

Mit diesem Rahmen konnte ein Unitree Go1 Roboter erstmals agile und kontinuierliche Sprünge auf menschlichen Treppenstufen und spärlich verteilten Steinen ausführen. Der Roboter war in der Lage, zwei Treppenstufen in einem Sprung zu überwinden und eine 3,5 Meter lange, 2,8 Meter hohe, 14-stufige Treppe in 4,5 Sekunden zu bewältigen. Diese beeindruckenden Leistungen wurden durch die Kombination von Reinforcement Learning und präzisem Modellieren der Hardware erreicht.

Weitere Anwendungen

Der entwickelte Steuerungsrahmen zeigte auch in anderen Parkour-Aufgaben seine Überlegenheit. Der Roboter konnte erfolgreich über einzelne horizontale oder vertikale Diskontinuitäten springen und dabei die Baseline-Modelle übertreffen.

Verknüpfung mit anderen Forschungsarbeiten

Ähnliche Ansätze wurden auch in anderen Forschungsarbeiten verfolgt. Beispielsweise präsentiert die Methode der Tiefe-basierte Impulskontrolle (DIC) hochagile visuell geführte Lokomotionsverhalten, welche die Flexibilität des modellfreien Lernens mit expliziter modellbasierter Optimierung der Bodenreaktionskräfte verbindet. Diese Methode wurde sowohl in der Simulation als auch in der realen Welt getestet.

Fazit

Die Fortschritte in der Fortbewegung von Robotern in diskontinuierlichem Gelände markieren einen bedeutenden Schritt nach vorne in der Robotik. Durch die Kombination von hierarchischem Lernen und präziser Hardwaremodellierung können Roboter nun dynamische, agile Bewegungen ausführen, die zuvor nicht möglich waren. Diese Entwicklungen eröffnen neue Möglichkeiten für den Einsatz von Robotern in komplexen Umgebungen und stellen einen wichtigen Meilenstein in der Forschung dar.

Bibliographie

https://arxiv.org/abs/2110.15344 https://sites.google.com/view/jumpingfrompixels https://openreview.net/forum?id=R4E8wTUtxdl https://www.researchgate.net/publication/355732879_Learning_to_Jump_from_Pixels https://proceedings.mlr.press/v164/margolis22a.html https://deepai.org/publication/learning-to-jump-from-pixels https://www.sciencedirect.com/science/article/pii/S0921889016307709 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9887594/ https://elib.dlr.de/198428/1/T-RO-author-version.pdf https://www.researchgate.net/publication/351765082_Continuous_and_programmable_photomechanical_jumping_of_polymer_monoliths
Was bedeutet das?
Mindverse vs ChatGPT Plus Widget

Warum Mindverse Studio?

Entdecken Sie die Vorteile gegenüber ChatGPT Plus

Sie nutzen bereits ChatGPT Plus? Das ist ein guter Anfang! Aber stellen Sie sich vor, Sie hätten Zugang zu allen führenden KI-Modellen weltweit, könnten mit Ihren eigenen Dokumenten arbeiten und nahtlos im Team kollaborieren.

🚀 Mindverse Studio

Die professionelle KI-Plattform für Unternehmen – leistungsstärker, flexibler und sicherer als ChatGPT Plus. Mit über 50 Modellen, DSGVO-konformer Infrastruktur und tiefgreifender Integration in Unternehmensprozesse.

ChatGPT Plus

❌ Kein strukturierter Dokumentenvergleich

❌ Keine Bearbeitung im Dokumentkontext

❌ Keine Integration von Unternehmenswissen

VS

Mindverse Studio

✅ Gezielter Dokumentenvergleich mit Custom-Prompts

✅ Kontextbewusste Textbearbeitung im Editor

✅ Wissensbasierte Analyse & Zusammenfassungen

📚 Nutzen Sie Ihr internes Wissen – intelligent und sicher

Erstellen Sie leistungsstarke Wissensdatenbanken aus Ihren Unternehmensdokumenten.Mindverse Studio verknüpft diese direkt mit der KI – für präzise, kontextbezogene Antworten auf Basis Ihres spezifischen Know-hows.DSGVO-konform, transparent und jederzeit nachvollziehbar.

ChatGPT Plus

❌ Nur ein Modellanbieter (OpenAI)

❌ Keine Modellauswahl pro Use Case

❌ Keine zentrale Modellsteuerung für Teams

VS

Mindverse Studio

✅ Zugriff auf über 50 verschiedene KI-Modelle

✅ Modellauswahl pro Prompt oder Assistent

✅ Zentrale Steuerung auf Organisationsebene

🧠 Zugang zu allen führenden KI-Modellen – flexibel & anpassbar

OpenAI GPT-4: für kreative Texte und allgemeine Anwendungen
Anthropic Claude: stark in Analyse, Struktur und komplexem Reasoning
Google Gemini: ideal für multimodale Aufgaben (Text, Bild, Code)
Eigene Engines: individuell trainiert auf Ihre Daten und Prozesse

ChatGPT Plus

❌ Keine echte Teamkollaboration

❌ Keine Rechte- oder Rollenverteilung

❌ Keine zentrale Steuerung oder Nachvollziehbarkeit

VS

Mindverse Studio

✅ Teamübergreifende Bearbeitung in Echtzeit

✅ Granulare Rechte- und Freigabeverwaltung

✅ Zentrale Steuerung & Transparenz auf Organisationsebene

👥 Kollaborative KI für Ihr gesamtes Unternehmen

Nutzen Sie Mindverse Studio als zentrale Plattform für abteilungsübergreifende Zusammenarbeit.Teilen Sie Wissen, erstellen Sie gemeinsame Workflows und integrieren Sie KI nahtlos in Ihre täglichen Prozesse – sicher, skalierbar und effizient.Mit granularen Rechten, transparenter Nachvollziehbarkeit und Echtzeit-Kollaboration.

Bereit für den nächsten Schritt?

Sehen Sie Mindverse Studio in Aktion. Buchen Sie eine persönliche 30-minütige Demo.

🎯 Kostenlose Demo buchen

Wie können wir Ihnen heute helfen?

Das Expertenteam von Mindverse freut sich darauf, Ihnen zu helfen.
Herzlichen Dank! Deine Nachricht ist eingegangen!
Oops! Du hast wohl was vergessen, versuche es nochmal.

🚀 Neugierig auf Mindverse Studio?

Lernen Sie in nur 30 Minuten kennen, wie Ihr Team mit KI mehr erreichen kann – live und persönlich.

🚀 Demo jetzt buchen