KI für Ihr Unternehmen – Jetzt Demo buchen

Nvidia enthüllt Eagle: Neue Wege in der Entwicklung multimodaler großer Sprachmodelle

Kategorien:
No items found.
Freigegeben:
August 30, 2024

KI sauber im Unternehmen integrieren: Der 5-Schritte-Plan

Von der ersten Idee bis zur voll integrierten KI-Lösung – strukturiert, sicher und mit messbarem Erfolg

1
🎯

Strategie & Zieldefinition

Wir analysieren Ihre Geschäftsprozesse und identifizieren konkrete Use Cases mit dem höchsten ROI-Potenzial.

✓ Messbare KPIs definiert

2
🛡️

Daten & DSGVO-Compliance

Vollständige Datenschutz-Analyse und Implementierung sicherer Datenverarbeitungsprozesse nach EU-Standards.

✓ 100% DSGVO-konform

3
⚙️

Technologie- & Tool-Auswahl

Maßgeschneiderte Auswahl der optimalen KI-Lösung – von Azure OpenAI bis zu Open-Source-Alternativen.

✓ Beste Lösung für Ihren Fall

4
🚀

Pilotprojekt & Integration

Schneller Proof of Concept mit nahtloser Integration in Ihre bestehende IT-Infrastruktur und Workflows.

✓ Ergebnisse in 4-6 Wochen

5
👥

Skalierung & Team-Schulung

Unternehmensweiter Rollout mit umfassenden Schulungen für maximale Akzeptanz und Produktivität.

✓ Ihr Team wird KI-fit

Inhaltsverzeichnis

    mindverse studio – Ihre Plattform für digitale Effizienz

    Optimieren Sie Prozesse, automatisieren Sie Workflows und fördern Sie Zusammenarbeit – alles an einem Ort.
    Mehr über Mindverse Studio erfahren

    Nvidia präsentiert Eagle: Erforschung des Designs für multimodale LLMs mit einer Mischung von Encodern

    Einleitung

    Die Fähigkeit, komplexe visuelle Informationen akkurat zu interpretieren, ist ein zentrales Thema bei multimodalen großen Sprachmodellen (MLLMs). Aktuelle Arbeiten zeigen, dass eine verbesserte visuelle Wahrnehmung die Halluzinationen erheblich reduziert und die Leistung bei auflösungsabhängigen Aufgaben, wie optische Zeichenerkennung (OCR) und Dokumentenanalyse, verbessert. Zahlreiche aktuelle MLLMs erreichen dieses Ziel durch die Verwendung einer Mischung aus visuellen Encodern.

    Herausforderungen und Fortschritte

    Trotz ihres Erfolgs gibt es einen Mangel an systematischen Vergleichen und detaillierten Abbruchstudien, die kritische Aspekte wie die Auswahl von Experten und die Integration mehrerer visueller Experten behandeln. Diese Studie bietet eine umfassende Erforschung des Designs für MLLMs unter Verwendung einer Mischung aus visuellen Encodern und Auflösungen. Unsere Ergebnisse zeigen mehrere grundlegende Prinzipien, die verschiedenen bestehenden Strategien gemeinsam sind, was zu einem gestrafften und dennoch effektiven Designansatz führt.

    Hauptentdeckungen

    Wir entdecken, dass das einfache Aneinanderreihen von visuellen Tokens aus einer Reihe von komplementären visuellen Encodern genauso effektiv ist wie komplexere Mischarchitekturen oder -strategien. Darüber hinaus führen wir eine Vor-Ausrichtung ein, um die Lücke zwischen visuell fokussierten Encodern und Sprach-Tokens zu überbrücken, was die Kohärenz des Modells verbessert.

    Die Entwicklung von Eagle

    Die resultierende Familie von MLLMs, genannt Eagle, übertrifft andere führende Open-Source-Modelle auf den wichtigsten MLLM-Benchmarks. Diese Entwicklung markiert einen bedeutenden Fortschritt in der Integration und Nutzung multimodaler Daten, insbesondere im Bereich der visuellen Inhalte.

    Das Design von Eagle

    Eagle verwendet eine Mischung aus Encodern, um verschiedene visuelle Informationen zu verarbeiten. Diese Encodermischung ermöglicht eine genauere und umfassendere Analyse von Bildern und anderen visuellen Daten. Das Modell verwendet eine Vor-Ausrichtung, um sicherzustellen, dass die visuellen Daten korrekt und kohärent in das Sprachmodell integriert werden.

    Zukünftige Anwendungen und Forschung

    Die Erkenntnisse und Technologien, die bei der Entwicklung von Eagle gewonnen wurden, könnten weitreichende Auswirkungen auf verschiedene Bereiche haben, von der medizinischen Bildgebung bis zur automatisierten Dokumentenanalyse. Weitere Forschungen könnten darauf abzielen, die Leistung von Eagle in spezifischen Anwendungsfällen zu optimieren und neue Methoden zur Integration multimodaler Daten zu erforschen.

    Potenzielle Anwendungen

    Zu den potenziellen Anwendungen gehören:

    - Optische Zeichenerkennung (OCR) - Dokumentenanalyse - Medizinische Bildgebung - Automatisierte Qualitätskontrolle in der Fertigung

    Abschluss

    Die Einführung von Eagle durch Nvidia stellt einen bedeutenden Schritt in der Entwicklung von multimodalen großen Sprachmodellen dar. Durch die Nutzung einer Mischung aus visuellen Encodern und innovativen Designansätzen hat Eagle das Potenzial, die Art und Weise, wie wir visuelle Informationen verarbeiten und interpretieren, grundlegend zu verändern.

    Bibliografie

    https://x.com/_akhaliq/status/1828987044288197029 https://arxiv.org/abs/2405.11273 https://developer.nvidia.com/blog/an-easy-introduction-to-multimodal-retrieval-augmented-generation/ https://cambrian-mllm.github.io/ https://arxiv.org/html/2403.08773v1 https://medium.com/@cout.shubham/exploring-multimodal-large-language-models-a-step-forward-in-ai-626918c6a3ec https://docs.nvidia.com/nemo-framework/user-guide/latest/nemotoolkit/multimodal/mllm/intro.html https://openaccess.thecvf.com/content/CVPR2024/papers/Zhang_Exploring_the_Transferability_of_Visual_Prompting_for_Multimodal_Large_Language_CVPR_2024_paper.pdf https://github.com/BradyFU/Awesome-Multimodal-Large-Language-Models

    Artikel jetzt als Podcast anhören

    Kunden die uns vertrauen:
    Arise Health logoArise Health logoThe Paak logoThe Paak logoOE logo2020INC logoEphicient logo
    und viele weitere mehr!

    Bereit für den nächsten Schritt?

    Das Expertenteam von Mindverse freut sich darauf, Ihnen zu helfen.
    Herzlichen Dank! Deine Nachricht ist eingegangen!
    Oops! Du hast wohl was vergessen, versuche es nochmal.

    🚀 Neugierig auf Mindverse Studio?

    Lernen Sie in nur 30 Minuten kennen, wie Ihr Team mit KI mehr erreichen kann – live und persönlich.

    🚀 Demo jetzt buchen