KI für Ihr Unternehmen – Jetzt Demo buchen

Time MoE Neuerungen und Potenziale in der Zeitreihenanalyse

Kategorien:
No items found.
Freigegeben:
September 27, 2024

KI sauber im Unternehmen integrieren: Der 5-Schritte-Plan

Von der ersten Idee bis zur voll integrierten KI-Lösung – strukturiert, sicher und mit messbarem Erfolg

1
🎯

Strategie & Zieldefinition

Wir analysieren Ihre Geschäftsprozesse und identifizieren konkrete Use Cases mit dem höchsten ROI-Potenzial.

✓ Messbare KPIs definiert

2
🛡️

Daten & DSGVO-Compliance

Vollständige Datenschutz-Analyse und Implementierung sicherer Datenverarbeitungsprozesse nach EU-Standards.

✓ 100% DSGVO-konform

3
⚙️

Technologie- & Tool-Auswahl

Maßgeschneiderte Auswahl der optimalen KI-Lösung – von Azure OpenAI bis zu Open-Source-Alternativen.

✓ Beste Lösung für Ihren Fall

4
🚀

Pilotprojekt & Integration

Schneller Proof of Concept mit nahtloser Integration in Ihre bestehende IT-Infrastruktur und Workflows.

✓ Ergebnisse in 4-6 Wochen

5
👥

Skalierung & Team-Schulung

Unternehmensweiter Rollout mit umfassenden Schulungen für maximale Akzeptanz und Produktivität.

✓ Ihr Team wird KI-fit

Inhaltsverzeichnis

    mindverse studio – Ihre Plattform für digitale Effizienz

    Optimieren Sie Prozesse, automatisieren Sie Workflows und fördern Sie Zusammenarbeit – alles an einem Ort.
    Mehr über Mindverse Studio erfahren
    Time-MoE: Fortschritte in der Zeitreihenprognose

    Einführung in Time-MoE: Fortschritte in der Zeitreihenprognose

    Hintergrund und Motivation

    Die Vorhersage von Zeitreihen spielt in zahlreichen Bereichen wie Einzelhandel, Finanzen, Gesundheitswesen und Naturwissenschaften eine entscheidende Rolle. Obwohl Deep Learning (DL) Modelle in den letzten Jahren erhebliche Fortschritte erzielt haben, bleiben vortrainierte Zeitreihenmodelle hinsichtlich Skalierbarkeit und Kosten begrenzt. Diese Einschränkungen behindern die Entwicklung größerer, leistungsfähigerer Prognosemodelle für reale Anwendungen.

    Die Einführung von Time-MoE

    Um diese Herausforderungen zu adressieren, wurde Time-MoE entwickelt. Time-MoE steht für "Time Series Model with Mixture of Experts" und ist eine skalierbare und einheitliche Architektur, die darauf abzielt, größere und leistungsfähigere Prognosemodelle vorzutrainieren und gleichzeitig die Inferenzkosten zu senken. Durch die Nutzung eines sparsamen "Mixture of Experts" (MoE) Designs wird die Recheneffizienz verbessert, indem nur ein Teil der Netzwerke für jede Vorhersage aktiviert wird. Dies reduziert die Rechenlast, während die hohe Modellkapazität erhalten bleibt.

    Technische Details und Architektur

    Time-MoE besteht aus einer Familie von Decoder-Only-Transformermodellen, die autoregressiv arbeiten und flexible Vorhersagehorizonte mit variablen Eingabekontextlängen unterstützen. Diese Modelle wurden auf einem neu eingeführten, groß angelegten Datensatz namens Time-300B vortrainiert, der über 9 Domänen und mehr als 300 Milliarden Zeitpunkte umfasst. Zum ersten Mal konnte ein Zeitreihen-Basismodell auf 2,4 Milliarden Parameter skaliert werden, was zu einer deutlich verbesserten Prognosegenauigkeit führte.

    Vorteile und Leistungsfähigkeit von Time-MoE

    Time-MoE zeigt erhebliche Vorteile gegenüber herkömmlichen dichten Modellen mit derselben Anzahl aktivierter Parameter oder äquivalentem Rechenbudget:

    • Verbesserte Vorhersagegenauigkeit: Time-MoE übertrifft dichte Modelle durchweg in der Vorhersagepräzision.
    • Effizienz: Die Verwendung eines sparsamen MoE-Designs ermöglicht es, die Skalierbarkeit zu erhöhen, ohne dass die Inferenzkosten proportional steigen.
    • Flexibilität: Die Modelle unterstützen flexible Vorhersagehorizonte und unterschiedliche Eingabekontextlängen, was ihre Anwendbarkeit in verschiedenen Szenarien erhöht.

    Anwendungsfälle und Evaluierung

    Die Evaluierung von Time-MoE zeigte, dass es in der Lage ist, komplexe reale Zeitreihenprognoseaufgaben mit überlegener Fähigkeit und Effizienz zu bewältigen. Die Modelle wurden auf verschiedenen öffentlichen Benchmarks getestet und erzielten beeindruckende Ergebnisse, die sowohl statistische Methoden als auch leistungsstarke DL-Modelle übertrafen.

    Verwendung in der Praxis

    Ein Beispiel für den praktischen Einsatz von Time-MoE ist die Nachfrageprognose im Einzelhandel, bei der genaue Vorhersagen die Lagerkosten senken und den Umsatz steigern können. Durch die Vorhersage von Verkaufszahlen können Unternehmen ihre Bestände besser verwalten und Engpässe oder Überbestände vermeiden.

    Schlussfolgerung

    Time-MoE stellt einen bedeutenden Fortschritt in der Zeitreihenprognose dar und bietet eine skalierbare, effiziente und flexible Lösung für reale Herausforderungen. Die Fähigkeit, größere und leistungsfähigere Prognosemodelle vorzutrainieren, ohne die Inferenzkosten zu erhöhen, positioniert Time-MoE als eine zukunftsweisende Technologie in der Welt der Zeitreihenanalyse.

    Bibliografie

    - https://huggingface.co/papers/2409.16040 - http://www.arxiv.org/abs/2409.03282 - https://arxiv.org/abs/2407.04153 - https://towardsdatascience.com/exploring-the-latest-advances-in-foundation-time-series-models-3fc8431ab7bd - https://github.com/dair-ai/ML-Papers-of-the-Week - https://developer.nvidia.com/blog/applying-mixture-of-experts-in-llm-architectures/ - https://icml.cc/Downloads/2024 - https://openaccess.thecvf.com/content/ICCV2023/papers/Chen_AdaMV-MoE_Adaptive_Multi-Task_Vision_Mixture-of-Experts_ICCV_2023_paper.pdf - http://research.google/blog/a-decoder-only-foundation-model-for-time-series-forecasting/ - https://www.researchgate.net/publication/221620024_Time_Series_Prediction_using_Mixtures_of_Experts

    Artikel jetzt als Podcast anhören

    Kunden die uns vertrauen:
    Arise Health logoArise Health logoThe Paak logoThe Paak logoOE logo2020INC logoEphicient logo
    und viele weitere mehr!

    Bereit für den nächsten Schritt?

    Das Expertenteam von Mindverse freut sich darauf, Ihnen zu helfen.
    Herzlichen Dank! Deine Nachricht ist eingegangen!
    Oops! Du hast wohl was vergessen, versuche es nochmal.

    🚀 Neugierig auf Mindverse Studio?

    Lernen Sie in nur 30 Minuten kennen, wie Ihr Team mit KI mehr erreichen kann – live und persönlich.

    🚀 Demo jetzt buchen