KI für Ihr Unternehmen – Jetzt Demo buchen

Neue Entwicklungen in der Keyframe Interpolation durch Bild zu Video Diffusionsmodelle

Kategorien:
No items found.
Freigegeben:
August 30, 2024

KI sauber im Unternehmen integrieren: Der 5-Schritte-Plan

Von der ersten Idee bis zur voll integrierten KI-Lösung – strukturiert, sicher und mit messbarem Erfolg

1
🎯

Strategie & Zieldefinition

Wir analysieren Ihre Geschäftsprozesse und identifizieren konkrete Use Cases mit dem höchsten ROI-Potenzial.

✓ Messbare KPIs definiert

2
🛡️

Daten & DSGVO-Compliance

Vollständige Datenschutz-Analyse und Implementierung sicherer Datenverarbeitungsprozesse nach EU-Standards.

✓ 100% DSGVO-konform

3
⚙️

Technologie- & Tool-Auswahl

Maßgeschneiderte Auswahl der optimalen KI-Lösung – von Azure OpenAI bis zu Open-Source-Alternativen.

✓ Beste Lösung für Ihren Fall

4
🚀

Pilotprojekt & Integration

Schneller Proof of Concept mit nahtloser Integration in Ihre bestehende IT-Infrastruktur und Workflows.

✓ Ergebnisse in 4-6 Wochen

5
👥

Skalierung & Team-Schulung

Unternehmensweiter Rollout mit umfassenden Schulungen für maximale Akzeptanz und Produktivität.

✓ Ihr Team wird KI-fit

Inhaltsverzeichnis

    mindverse studio – Ihre Plattform für digitale Effizienz

    Optimieren Sie Prozesse, automatisieren Sie Workflows und fördern Sie Zusammenarbeit – alles an einem Ort.
    Mehr über Mindverse Studio erfahren
    Generative Inbetweening: Adapting Image-to-Video Models for Keyframe Interpolation

    Generative Inbetweening: Fortschritte in der Bild-zu-Video-Modell-Adaption für Keyframe-Interpolation

    Einführung

    Die Welt der Künstlichen Intelligenz und Videotechnologie erlebt derzeit einen bedeutenden Wandel durch die Einführung neuer Methoden zur Bild-zu-Video-Generierung. Eine dieser bahnbrechenden Methoden ist das Generative Inbetweening, das darauf abzielt, kohärente Videosequenzen zwischen zwei Input-Keyframes zu generieren. Diese Technik basiert auf der Adaption großer, vortrainierter Bild-zu-Video-Diffusionsmodelle, um eine nahtlose Bewegungsdarstellung zwischen den Frames zu ermöglichen.

    Methodik

    Die vorgestellte Methode nutzt ein vortrainiertes groß angelegtes Bild-zu-Video-Diffusionsmodell, das ursprünglich darauf trainiert wurde, Videos vorwärts in der Zeit aus einem einzelnen Input-Bild zu generieren. Diese Modelle wurden nun für die Keyframe-Interpolation angepasst, um ein Video zwischen zwei Input-Frames zu erzeugen. Die Anpassung erfolgt durch eine leichte Feinabstimmung des Modells, sodass es Videos rückwärts in der Zeit aus einem Einzelbild vorhersagt.

    Dual-Directional Diffusionsprozess

    Diese modifizierte Version des Modells wird zusammen mit dem ursprünglichen vorwärtsbewegenden Modell in einem bidirektionalen Diffusions-Sampling-Prozess verwendet. Dieser Prozess kombiniert die überlappenden Modellszenarien, die von jedem der beiden Keyframes ausgehen. Dies ermöglicht eine nahtlose Integration beider Bewegungswege und führt zu einer kohärenten Videosequenz zwischen den Frames.

    Experimente und Ergebnisse

    Die Experimente zeigen, dass die vorgestellte Methode sowohl bestehende Diffusions-basierte Methoden als auch traditionelle Frame-Interpolations-Techniken übertrifft. Dies wird durch die Fähigkeit des Modells erreicht, komplexe Bewegungen und 3D-konsistente Ansichten zu erzeugen, die durch die Begrenzungsframes gesteuert werden.

    Vergleich mit bestehenden Methoden

    Traditionelle Methoden zur Frame-Interpolation basieren oft auf Annahmen über lineare Bewegungen und können mit großen Bewegungen oder Texturarmen Regionen wie in Cartoons Schwierigkeiten haben. Im Gegensatz dazu ermöglicht das Generative Inbetweening die Generierung von Frames mit komplexen nicht-linearen Bewegungen und Phänomenen wie Disokklusionen, die in Cartoons häufig auftreten.

    ToonCrafter

    Ein bemerkenswertes Beispiel für die Anwendung dieser Technik ist ToonCrafter, eine Methode, die darauf abzielt, die Bewegung von Live-Action-Video-Prioren für die generative Cartoon-Interpolation zu nutzen. ToonCrafter verwendet eine Toon-Dekodierungsstrategie, um die Bewegungsprioren an die Cartoon-Domäne anzupassen und die Detailverluste durch hochkomprimierte latente Räume zu kompensieren.

    Schlussfolgerung

    Die Methode des Generative Inbetweening stellt eine bedeutende Weiterentwicklung in der Videotechnologie dar. Sie ermöglicht es, Videos zwischen beliebigen Keyframes zu generieren, ohne dass zusätzliche Trainingsdaten oder Feinabstimmungen erforderlich sind. Diese Technik öffnet die Tür zu zahlreichen Anwendungen, von der Animation bis hin zu komplexen Bewegungsanalysen.

    Bibliographie

    - https://huggingface.co/papers/2408.15239 - https://arxiv.org/html/2403.14611v1 - https://github.com/DmitryRyumin/ICCV-2023-Papers/blob/main/sections/2023/main/image-and-video-synthesis.md - https://www.researchgate.net/publication/383236111_Thin-Plate_Spline-based_Interpolation_for_Animation_Line_Inbetweening - https://arxiv.org/html/2405.17933v1 - https://www.reddit.com/r/StableDiffusion/comments/1d470rv/tooncrafter_generative_cartoon_interpolation/ - https://github.com/yzhang2016/video-generation-survey/blob/main/video-generation.md - https://www.cs.toronto.edu/~tianxingli/assets/inbetweening_submission_eccv.pdf - https://dl.acm.org/doi/10.1109/TVCG.2021.3049419

    Artikel jetzt als Podcast anhören

    Kunden die uns vertrauen:
    Arise Health logoArise Health logoThe Paak logoThe Paak logoOE logo2020INC logoEphicient logo
    und viele weitere mehr!

    Bereit für den nächsten Schritt?

    Das Expertenteam von Mindverse freut sich darauf, Ihnen zu helfen.
    Herzlichen Dank! Deine Nachricht ist eingegangen!
    Oops! Du hast wohl was vergessen, versuche es nochmal.

    🚀 Neugierig auf Mindverse Studio?

    Lernen Sie in nur 30 Minuten kennen, wie Ihr Team mit KI mehr erreichen kann – live und persönlich.

    🚀 Demo jetzt buchen