KI für Ihr Unternehmen – Jetzt Demo buchen

Menschliches Feedback als Wegbereiter für intelligente Sprachmodelle

Kategorien:
No items found.
Freigegeben:
September 27, 2024

KI sauber im Unternehmen integrieren: Der 5-Schritte-Plan

Von der ersten Idee bis zur voll integrierten KI-Lösung – strukturiert, sicher und mit messbarem Erfolg

1
🎯

Strategie & Zieldefinition

Wir analysieren Ihre Geschäftsprozesse und identifizieren konkrete Use Cases mit dem höchsten ROI-Potenzial.

✓ Messbare KPIs definiert

2
🛡️

Daten & DSGVO-Compliance

Vollständige Datenschutz-Analyse und Implementierung sicherer Datenverarbeitungsprozesse nach EU-Standards.

✓ 100% DSGVO-konform

3
⚙️

Technologie- & Tool-Auswahl

Maßgeschneiderte Auswahl der optimalen KI-Lösung – von Azure OpenAI bis zu Open-Source-Alternativen.

✓ Beste Lösung für Ihren Fall

4
🚀

Pilotprojekt & Integration

Schneller Proof of Concept mit nahtloser Integration in Ihre bestehende IT-Infrastruktur und Workflows.

✓ Ergebnisse in 4-6 Wochen

5
👥

Skalierung & Team-Schulung

Unternehmensweiter Rollout mit umfassenden Schulungen für maximale Akzeptanz und Produktivität.

✓ Ihr Team wird KI-fit

Inhaltsverzeichnis

    mindverse studio – Ihre Plattform für digitale Effizienz

    Optimieren Sie Prozesse, automatisieren Sie Workflows und fördern Sie Zusammenarbeit – alles an einem Ort.
    Mehr über Mindverse Studio erfahren
    Artikel

    Reinforcement Learning from Human Feedback (RLHF) in Großen Sprachmodellen (LLMs): Ein Weg zur Künstlichen Allgemeinen Intelligenz (AGI)

    Einführung

    Die rasante Entwicklung von Großen Sprachmodellen (LLMs) hat das Potenzial, die Art und Weise, wie wir mit Maschinen interagieren, grundlegend zu verändern. Ein zentrales Element auf dem Weg zu Künstlicher Allgemeiner Intelligenz (AGI) ist das Reinforcement Learning from Human Feedback (RLHF). RLHF nutzt menschliches Feedback, um das Verhalten von Sprachmodellen so zu optimieren, dass sie besser mit menschlichen Werten, Präferenzen und Erwartungen übereinstimmen.

    Die Bedeutung von RLHF für LLMs

    RLHF hat sich als Schlüsseltechnologie zur Maximierung des Potenzials heutiger LLMs erwiesen. Es gewährleistet, dass Modelle nicht nur kohärente und nützliche Ausgaben produzieren, sondern auch enger mit menschlichen Werten und Präferenzen übereinstimmen. Bevor RLHF eingeführt wurde, bestand der Trainingsprozess für LLMs typischerweise aus einer Vortrainingsphase und einer Feinabstimmungsphase. Durch die Integration menschlichen Urteilsvermögens als dritte Trainingsstufe stellt RLHF sicher, dass Modelle dynamischer und kontextbewusster sind.

    Der RLHF-Prozess

    Schritt 1: Sammlung menschlichen Feedbacks

    Der erste Schritt bei RLHF besteht darin, menschliches Feedback in Form eines Präferenzdatensatzes zu sammeln. Jedes Beispiel in diesem Datensatz besteht aus einem Prompt, zwei verschiedenen Antworten des LLMs und einer Kennzeichnung, welche der beiden Antworten von einem menschlichen Bewerter bevorzugt wurde.

    Schritt 2: Training eines Belohnungsmodells

    Nachdem der Präferenzdatensatz erstellt wurde, wird ein Belohnungsmodell (Reward Model, RM) trainiert. Das RM ist typischerweise ein LLM, das zwei Ausgaben, sogenannte Belohnungen, für jede der Antworten produziert. Das Trainingsziel besteht darin, den Unterschied in der Belohnung zwischen der bevorzugten und der nicht bevorzugten Antwort zu maximieren.

    Schritt 3: Feinabstimmung des LLM mit dem Belohnungsmodell

    Der letzte Schritt ist die Feinabstimmung des LLMs mit dem Belohnungsmodell. Dieser Schritt verwendet einen anderen Datensatz, der nur Prompts enthält. Das Ziel der Feinabstimmung ist es, das LLM zu trainieren, um Ausgaben zu produzieren, die besser mit menschlichen Präferenzen übereinstimmen.

    Herausforderungen und zukunftsträchtige Ansätze

    Während RLHF erhebliche Vorteile bietet, gibt es auch Herausforderungen. Dazu gehören die Qualität und Konsistenz des menschlichen Feedbacks sowie die Skalierbarkeit der Feedback-Sammlung. Zukünftige Forschungen werden sich wahrscheinlich darauf konzentrieren, die Skalierbarkeit der Feedback-Sammlung zu verbessern und fortschrittlichere Algorithmen für das Reinforcement Learning zu entwickeln.

    Fazit

    Reinforcement Learning from Human Feedback (RLHF) stellt einen kritischen Fortschritt im Bereich der natürlichen Sprachverarbeitung dar. Es ermöglicht die Erstellung von Sprachmodellen, die nicht nur technisch versiert, sondern auch ethisch ausgerichtet und benutzerzentriert sind. Durch die Integration von menschlichem Feedback in den Trainingsprozess stellt RLHF sicher, dass Sprachmodelle hilfreiche, relevante und sichere Interaktionen bieten können, was sie für eine Vielzahl von Anwendungen geeigneter macht.

    Quellen:

    - https://arxiv.org/abs/2309.00267 - https://arxiv.org/abs/2307.04964 - https://neptune.ai/blog/reinforcement-learning-from-human-feedback-for-llms - https://medium.com/@biradarmithilesh/reinforcement-learning-from-human-feedback-rlhf-in-language-models-b0e905579d65 - https://www.telusdigital.com/insights/ai-data/article/rlhf-advancing-large-language-models - https://www.superannotate.com/blog/rlhf-for-llm - https://kili-technology.com/large-language-models-llms/exploring-reinforcement-learning-from-human-feedback-rlhf-a-comprehensive-guide - https://en.innovatiana.com/post/rlhf-our-detailed-guide

    Artikel jetzt als Podcast anhören

    Kunden die uns vertrauen:
    Arise Health logoArise Health logoThe Paak logoThe Paak logoOE logo2020INC logoEphicient logo
    und viele weitere mehr!

    Bereit für den nächsten Schritt?

    Das Expertenteam von Mindverse freut sich darauf, Ihnen zu helfen.
    Herzlichen Dank! Deine Nachricht ist eingegangen!
    Oops! Du hast wohl was vergessen, versuche es nochmal.

    🚀 Neugierig auf Mindverse Studio?

    Lernen Sie in nur 30 Minuten kennen, wie Ihr Team mit KI mehr erreichen kann – live und persönlich.

    🚀 Demo jetzt buchen