KI für Ihr Unternehmen – Jetzt Demo buchen

Lernfähigkeit von Sprachmodellen in der kompositionellen Generalisierung

Kategorien:
No items found.
Freigegeben:
October 3, 2024

Artikel jetzt als Podcast anhören

Inhaltsverzeichnis

    Können Modelle Skill-Komposition aus Beispielen lernen?

    Mit der fortschreitenden Entwicklung großer Sprachmodelle (LLMs) rückt ihre Fähigkeit zur kompositionellen Generalisierung – die Fähigkeit, gelernte Fähigkeiten auf neuartige Weise zu kombinieren, die während des Trainings nicht vorkamen – zunehmend in den Fokus der Aufmerksamkeit. Diese Art der Generalisierung, insbesondere in Szenarien, die über die Trainingsdaten hinausgehen, ist auch für die Erforschung der Sicherheit und Ausrichtung von KI von großem Interesse.

    Eine aktuelle Studie stellte die SKILL-MIX-Evaluierung vor, bei der Modelle die Aufgabe haben, einen kurzen Absatz zu verfassen, der die Anwendung eines bestimmten k-Tupels von Sprachfertigkeiten demonstriert. Während kleinere Modelle schon bei k=3 Schwierigkeiten hatten, Texte zu komponieren, zeigten größere Modelle wie GPT-4 eine recht gute Leistung bei k=5 und 6.

    In einer neuen Forschungsarbeit wird nun ein ähnlicher Ansatz wie bei SKILL-MIX verwendet, um die Fähigkeit kleinerer Modelle zu untersuchen, kompositionelle Generalisierung aus Beispielen zu lernen. Unter Verwendung eines breiten Spektrums an Sprachfertigkeiten – darunter Rhetorik, Literatur, Argumentation, Theory of Mind und gesunder Menschenverstand – wurde GPT-4 eingesetzt, um Textbeispiele zu generieren, die zufällige Teilmengen von k Fertigkeiten aufweisen. Das anschließende Finetuning von Modellen mit 7B und 13B Parametern auf diesen kombinierten Skill-Texten für steigende Werte von k ergab folgende Erkenntnisse:

    Wichtige Erkenntnisse des Finetunings

    Das Training mit Kombinationen von k=2 und 3 Fähigkeiten führt zu spürbaren Verbesserungen der Fähigkeit, Texte mit k=4 und 5 Fähigkeiten zu verfassen, obwohl die Modelle während des Trainings nie solche Beispiele gesehen haben. Werden Fähigkeitenkategorien in Trainings- und Hold-out-Gruppen aufgeteilt, verbessern sich die Modelle beim Verfassen von Texten mit Hold-out-Fähigkeiten während des Tests signifikant, obwohl sie während des Finetunings nur Trainingsfähigkeiten gesehen haben. Dies zeigt die Wirksamkeit des Trainingsansatzes auch bei bisher nicht bekannten Fähigkeiten.

    Diese Studie legt nahe, dass die Einbeziehung von fähigkeitsreichem (potenziell synthetischem) Text in das Training die kompositionellen Fähigkeiten von Modellen erheblich verbessern kann. Die Ergebnisse dieser Forschungsarbeit haben wichtige Implikationen für die Entwicklung von LLMs, die in der Lage sind, über die Grenzen ihrer Trainingsdaten hinaus zu generalisieren und neue und kreative Lösungen für komplexe Probleme zu finden.

    Weitere Forschungsperspektiven

    Die Erforschung der kompositionellen Generalisierung in LLMs ist noch lange nicht abgeschlossen. Zukünftige Arbeiten könnten sich auf die Entwicklung robusterer Evaluierungsmetriken, die Untersuchung verschiedener Trainingsmethoden und die Erforschung der Grenzen der kompositionellen Generalisierung in LLMs konzentrieren. Das Verständnis der Faktoren, die zur kompositionellen Generalisierung beitragen, wird für die Entwicklung von KI-Systemen von entscheidender Bedeutung sein, die in der Lage sind, menschenähnliche Argumentations- und Problemlösungsfähigkeiten zu erreichen.

    Bibliographie

    Lake, Brenden M, and Marco Baroni. “Human-Like Systematic Generalization through a Meta-Learning Neural Network.” Nature 623, no. 7988 (October 25, 2023): 115–21. https://doi.org/10.1038/s41586-023-06668-3. Zhao, Haoyu, Simran Kaur, Dingli Yu, Anirudh Goyal, and Sanjeev Arora. “Can Models Learn Skill Composition from Examples?” In ICML 2024 Workshop on LLMs and Cognition. OpenReview.net, June 18, 2024. https://openreview.net/forum?id=YEEsRgkvnU. Chen, Jiaao, Xiaoman Pan, Dian Yu, Kaiqiang Song, Xiaoyang Wang, Dong Yu, and Jianshu Chen. “Skills-in-Context Prompting: Unlocking Compositionality in Large Language Models.” arXiv, August 1, 2023. https://doi.org/10.48550/arXiv.2308.00304. Zhou, Hattie, Azade Nova, Hugo Larochelle, Aaron Courville, Behnam Neyshabur, and Hanie Sedghi. “Teaching Algorithmic Reasoning via In-Context Learning.” arXiv, November 15, 2022. https://doi.org/10.48550/arXiv.2211.09066.
    Mindverse vs ChatGPT Plus Widget

    Warum Mindverse Studio?

    Entdecken Sie die Vorteile gegenüber ChatGPT Plus

    Sie nutzen bereits ChatGPT Plus? Das ist ein guter Anfang! Aber stellen Sie sich vor, Sie hätten Zugang zu allen führenden KI-Modellen weltweit, könnten mit Ihren eigenen Dokumenten arbeiten und nahtlos im Team kollaborieren.

    🚀 Mindverse Studio

    Die professionelle KI-Plattform für Unternehmen – leistungsstärker, flexibler und sicherer als ChatGPT Plus. Mit über 50 Modellen, DSGVO-konformer Infrastruktur und tiefgreifender Integration in Unternehmensprozesse.

    ChatGPT Plus

    ❌ Kein strukturierter Dokumentenvergleich

    ❌ Keine Bearbeitung im Dokumentkontext

    ❌ Keine Integration von Unternehmenswissen

    VS

    Mindverse Studio

    ✅ Gezielter Dokumentenvergleich mit Custom-Prompts

    ✅ Kontextbewusste Textbearbeitung im Editor

    ✅ Wissensbasierte Analyse & Zusammenfassungen

    📚 Nutzen Sie Ihr internes Wissen – intelligent und sicher

    Erstellen Sie leistungsstarke Wissensdatenbanken aus Ihren Unternehmensdokumenten.Mindverse Studio verknüpft diese direkt mit der KI – für präzise, kontextbezogene Antworten auf Basis Ihres spezifischen Know-hows.DSGVO-konform, transparent und jederzeit nachvollziehbar.

    ChatGPT Plus

    ❌ Nur ein Modellanbieter (OpenAI)

    ❌ Keine Modellauswahl pro Use Case

    ❌ Keine zentrale Modellsteuerung für Teams

    VS

    Mindverse Studio

    ✅ Zugriff auf über 50 verschiedene KI-Modelle

    ✅ Modellauswahl pro Prompt oder Assistent

    ✅ Zentrale Steuerung auf Organisationsebene

    🧠 Zugang zu allen führenden KI-Modellen – flexibel & anpassbar

    OpenAI GPT-4: für kreative Texte und allgemeine Anwendungen
    Anthropic Claude: stark in Analyse, Struktur und komplexem Reasoning
    Google Gemini: ideal für multimodale Aufgaben (Text, Bild, Code)
    Eigene Engines: individuell trainiert auf Ihre Daten und Prozesse

    ChatGPT Plus

    ❌ Keine echte Teamkollaboration

    ❌ Keine Rechte- oder Rollenverteilung

    ❌ Keine zentrale Steuerung oder Nachvollziehbarkeit

    VS

    Mindverse Studio

    ✅ Teamübergreifende Bearbeitung in Echtzeit

    ✅ Granulare Rechte- und Freigabeverwaltung

    ✅ Zentrale Steuerung & Transparenz auf Organisationsebene

    👥 Kollaborative KI für Ihr gesamtes Unternehmen

    Nutzen Sie Mindverse Studio als zentrale Plattform für abteilungsübergreifende Zusammenarbeit.Teilen Sie Wissen, erstellen Sie gemeinsame Workflows und integrieren Sie KI nahtlos in Ihre täglichen Prozesse – sicher, skalierbar und effizient.Mit granularen Rechten, transparenter Nachvollziehbarkeit und Echtzeit-Kollaboration.

    Bereit für den nächsten Schritt?

    Sehen Sie Mindverse Studio in Aktion. Buchen Sie eine persönliche 30-minütige Demo.

    🎯 Kostenlose Demo buchen

    Wie können wir Ihnen heute helfen?

    Das Expertenteam von Mindverse freut sich darauf, Ihnen zu helfen.
    Herzlichen Dank! Deine Nachricht ist eingegangen!
    Oops! Du hast wohl was vergessen, versuche es nochmal.

    🚀 Neugierig auf Mindverse Studio?

    Lernen Sie in nur 30 Minuten kennen, wie Ihr Team mit KI mehr erreichen kann – live und persönlich.

    🚀 Demo jetzt buchen