KI für Ihr Unternehmen – Jetzt Demo buchen

GRIN als Fortschritt in der Mixture-of-Experts Modellierung

Kategorien:
No items found.
Freigegeben:
September 19, 2024

KI sauber im Unternehmen integrieren: Der 5-Schritte-Plan

Von der ersten Idee bis zur voll integrierten KI-Lösung – strukturiert, sicher und mit messbarem Erfolg

1
🎯

Strategie & Zieldefinition

Wir analysieren Ihre Geschäftsprozesse und identifizieren konkrete Use Cases mit dem höchsten ROI-Potenzial.

✓ Messbare KPIs definiert

2
🛡️

Daten & DSGVO-Compliance

Vollständige Datenschutz-Analyse und Implementierung sicherer Datenverarbeitungsprozesse nach EU-Standards.

✓ 100% DSGVO-konform

3
⚙️

Technologie- & Tool-Auswahl

Maßgeschneiderte Auswahl der optimalen KI-Lösung – von Azure OpenAI bis zu Open-Source-Alternativen.

✓ Beste Lösung für Ihren Fall

4
🚀

Pilotprojekt & Integration

Schneller Proof of Concept mit nahtloser Integration in Ihre bestehende IT-Infrastruktur und Workflows.

✓ Ergebnisse in 4-6 Wochen

5
👥

Skalierung & Team-Schulung

Unternehmensweiter Rollout mit umfassenden Schulungen für maximale Akzeptanz und Produktivität.

✓ Ihr Team wird KI-fit

Inhaltsverzeichnis

    mindverse studio – Ihre Plattform für digitale Effizienz

    Optimieren Sie Prozesse, automatisieren Sie Workflows und fördern Sie Zusammenarbeit – alles an einem Ort.
    Mehr über Mindverse Studio erfahren

    Einführung in GRIN: Gradient-Informed MoE

    Die künstliche Intelligenz (KI) hat in den letzten Jahren beeindruckende Fortschritte gemacht, insbesondere im Bereich der Sprachmodelle und der Verarbeitung natürlicher Sprache. Ein besonders innovativer Ansatz in diesem Bereich ist das "Mixture-of-Experts" (MoE)-Modell, das durch seine effiziente Nutzung von Rechenressourcen und seine Skalierbarkeit besticht. Vor kurzem wurde ein neuer Trainingsansatz namens GRIN (Gradient-Informed MoE) vorgestellt, der das Potenzial hat, die Leistungsfähigkeit von MoE-Modellen erheblich zu verbessern.

    Die Grundlagen des Mixture-of-Experts-Modells

    MoE-Modelle unterscheiden sich von herkömmlichen KI-Modellen durch ihre Fähigkeit, nur eine kleine Untermenge von Expertenmodulen für die Berechnung zu aktivieren. Dies ermöglicht eine effiziente Nutzung der Rechenressourcen, da nicht das gesamte Modell gleichzeitig aktiv sein muss. Das MoE-Modell verwendet ein Routing-System, das entscheidet, welche Expertenmodule für eine bestimmte Eingabe aktiviert werden sollen. Diese selektive Aktivierung ist jedoch auch eine Herausforderung, da sie die traditionelle Rückpropagierung und damit die gradientenbasierte Optimierung erschwert.

    Was ist GRIN?

    GRIN, oder Gradient-Informed MoE, ist ein neuer Trainingsansatz, der speziell für MoE-Modelle entwickelt wurde. Dieser Ansatz integriert eine spärliche Gradientenabschätzung für das Expertenrouting und konfiguriert die Modellparallelität so, dass das Token-Dropping vermieden wird. Dies ermöglicht eine effizientere und genauere Trainingsmethode für MoE-Modelle.

    Die technischen Details von GRIN

    Der GRIN-Ansatz verwendet SparseMixer-v2, um den Gradienten in Bezug auf das Expertenrouting abzuschätzen. Im Gegensatz zu herkömmlichen MoE-Trainingsmethoden, die das Experten-Gating als Proxy für die Gradientenabschätzung verwenden, bietet GRIN eine direktere und präzisere Methode. Darüber hinaus skaliert GRIN das MoE-Training ohne Expertenparallelität oder Token-Dropping, was die Effizienz und Genauigkeit weiter erhöht.

    Leistung und Evaluation von GRIN

    GRIN wurde auf verschiedene autoregressive Sprachmodellierungsaufgaben angewendet und hat beeindruckende Ergebnisse erzielt. Ein bemerkenswertes Modell ist das Top-2 16x3.8B MoE-Modell, das nur 6,6 Milliarden aktivierte Parameter verwendet. Dieses Modell übertrifft ein 7B-Dichtemodell und erreicht die Leistung eines 14B-Dichtemodells, das auf denselben Daten trainiert wurde.

    Benchmark-Ergebnisse

    Die Leistung von GRIN wurde anhand verschiedener Benchmarks bewertet:

    - MMLU: 79,4 - HellaSwag: 83,7 - HumanEval: 74,4 - MATH: 58,9

    Anwendungsfälle und Einsatzmöglichkeiten

    GRIN-MoE-Modelle sind vielseitig einsetzbar und eignen sich für verschiedene kommerzielle und wissenschaftliche Anwendungen. Sie sind besonders nützlich in Umgebungen mit begrenztem Speicher und Rechenleistung sowie in latenzkritischen Szenarien. Darüber hinaus zeigen sie starke Fähigkeiten in den Bereichen Logik, Mathematik und Codierung.

    Verantwortungsbewusste KI-Nutzung

    Wie bei anderen Sprachmodellen besteht auch bei GRIN-MoE das Potenzial für unangemessenes oder fehlerhaftes Verhalten. Entwickler sollten daher verantwortungsbewusste KI-Praktiken anwenden und sicherstellen, dass spezifische Anwendungsfälle den geltenden Gesetzen und Vorschriften entsprechen.

    Schlussfolgerung

    GRIN bietet eine innovative und leistungsstarke Methode zur Verbesserung der Effizienz und Genauigkeit von Mixture-of-Experts-Modellen. Durch die Integration von sparsamer Gradientenabschätzung und die Vermeidung von Token-Dropping setzt GRIN neue Maßstäbe in der KI-Forschung und -Anwendung.

    Weitere Informationen und technische Details zu GRIN finden Sie auf den folgenden Quellen:

    Bibliographie

    https://github.com/microsoft/GRIN-MoE https://x.com/_akhaliq?lang=de https://opg.optica.org/abstract.cfm?uri=oe-29-22-36997 https://www.sciencedirect.com/science/article/abs/pii/S2211285522009235 https://www.grin.com/document/432230?srsltid=AfmBOopoR59ZaFBxk6z87t6YOinkEKlRyWx4I7L1WhxYeSfU2VhWu1N2 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7673801/ https://library.imaging.org/admin/apis/public/api/ist/website/downloadArticle/lim/4/1/9 https://opg.optica.org/optcon/abstract.cfm?uri=optcon-2-11-2290 https://www.researchgate.net/publication/45584095_Tunable_two-dimensional_liquid_gradient_refractive_index_L-GRIN_lens_for_variable_light_focusing https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6338462/

    Artikel jetzt als Podcast anhören

    Kunden die uns vertrauen:
    Arise Health logoArise Health logoThe Paak logoThe Paak logoOE logo2020INC logoEphicient logo
    und viele weitere mehr!

    Bereit für den nächsten Schritt?

    Das Expertenteam von Mindverse freut sich darauf, Ihnen zu helfen.
    Herzlichen Dank! Deine Nachricht ist eingegangen!
    Oops! Du hast wohl was vergessen, versuche es nochmal.

    🚀 Neugierig auf Mindverse Studio?

    Lernen Sie in nur 30 Minuten kennen, wie Ihr Team mit KI mehr erreichen kann – live und persönlich.

    🚀 Demo jetzt buchen