KI für Ihr Unternehmen – Jetzt Demo buchen

Fortschritte in der affektiven Kognition durch Foundation Modelle: Eine umfassende Analyse

Kategorien:
No items found.
Freigegeben:
September 19, 2024

KI sauber im Unternehmen integrieren: Der 5-Schritte-Plan

Von der ersten Idee bis zur voll integrierten KI-Lösung – strukturiert, sicher und mit messbarem Erfolg

1
🎯

Strategie & Zieldefinition

Wir analysieren Ihre Geschäftsprozesse und identifizieren konkrete Use Cases mit dem höchsten ROI-Potenzial.

✓ Messbare KPIs definiert

2
🛡️

Daten & DSGVO-Compliance

Vollständige Datenschutz-Analyse und Implementierung sicherer Datenverarbeitungsprozesse nach EU-Standards.

✓ 100% DSGVO-konform

3
⚙️

Technologie- & Tool-Auswahl

Maßgeschneiderte Auswahl der optimalen KI-Lösung – von Azure OpenAI bis zu Open-Source-Alternativen.

✓ Beste Lösung für Ihren Fall

4
🚀

Pilotprojekt & Integration

Schneller Proof of Concept mit nahtloser Integration in Ihre bestehende IT-Infrastruktur und Workflows.

✓ Ergebnisse in 4-6 Wochen

5
👥

Skalierung & Team-Schulung

Unternehmensweiter Rollout mit umfassenden Schulungen für maximale Akzeptanz und Produktivität.

✓ Ihr Team wird KI-fit

Inhaltsverzeichnis

    mindverse studio – Ihre Plattform für digitale Effizienz

    Optimieren Sie Prozesse, automatisieren Sie Workflows und fördern Sie Zusammenarbeit – alles an einem Ort.
    Mehr über Mindverse Studio erfahren
    Human-like Affective Cognition in Foundation Models: Ein Überblick über aktuelle Forschungsergebnisse

    Einführung in die affektive Kognition bei Foundation Models

    Das Verständnis von Emotionen ist grundlegend für menschliche Interaktion und Erfahrung. Menschen können Emotionen aus Situationen oder Gesichtsausdrücken leicht ableiten, Situationen aus Emotionen interpretieren und eine Vielzahl anderer affektiver Kognitionen durchführen. Doch wie gut sind moderne KI-Modelle in der Lage, diese Inferenzleistungen zu erbringen? In diesem Artikel wird die aktuelle Forschung zur affektiven Kognition in Foundation Models untersucht und ein Überblick über die neuesten Ergebnisse gegeben.

    Evaluationsrahmen für affektive Kognition

    Ein neuer Evaluationsrahmen wurde eingeführt, um die affektive Kognition in Foundation Models zu testen. Basierend auf psychologischen Theorien wurden 1.280 verschiedene Szenarien generiert, die Beziehungen zwischen Bewertungen, Emotionen, Ausdrücken und Ergebnissen untersuchen. Die Fähigkeiten verschiedener Foundation Models (GPT-4, Claude-3, Gemini-1.5-Pro) und von Menschen (N = 567) wurden unter sorgfältig ausgewählten Bedingungen evaluiert.

    Ergebnisse der Evaluation

    Die Ergebnisse zeigen, dass Foundation Models tendenziell mit menschlichen Intuitionen übereinstimmen und in einigen Fällen sogar die Interpartizipanten-Übereinstimmung übertreffen. In bestimmten Bedingungen sind die Modelle "superhuman" – sie können menschliche Urteile besser vorhersagen als der durchschnittliche Mensch. Alle Modelle profitieren dabei von einer Ketten-gedachten Argumentation, was darauf hinweist, dass Foundation Models ein menschliches Verständnis von Emotionen und deren Einfluss auf Überzeugungen und Verhalten erworben haben.

    Die Rolle von Emotionen in der künstlichen Intelligenz

    Die Bedeutung von Emotionen für menschliche Intelligenz und Kognition wurde in der kognitiven und affektiven Neurowissenschaft stark betont. Es gibt ein wachsendes Interesse daran, emotionale Prozesse in Roboter und künstliche Agenten zu simulieren und zu modellieren. Ein Überblick über die aktuelle Literatur zeigt, dass bestehende Vorschläge in der künstlichen Emotion oft nicht ausreichend mit neurowissenschaftlichen Erkenntnissen in Verbindung stehen. Eine stärkere Integration von emotionsbezogenen Prozessen in Roboter-Modelle ist entscheidend für das Design menschlicher Verhaltensweisen in zukünftigen intelligenten Maschinen.

    Prinzipien für zukünftige Forschung

    Um die Entwicklung autonomer sozialer Maschinen voranzutreiben, die reale Probleme bewältigen können, ist eine stärkere Integration von emotionsbezogenen Prozessen notwendig. Dies würde nicht nur zur Entwicklung solcher Maschinen beitragen, sondern auch das Verständnis menschlicher Emotionen fördern.

    Frameworks zur Charakterisierung menschlicher Verhaltensmechanismen in Foundation Models

    Ein weiteres bedeutendes Forschungsfeld untersucht, wie human-like Verhaltensmechanismen in Foundation Models charakterisiert werden können. Das Framework RealBehavior zielt darauf ab, die humanoiden Verhaltensweisen von Modellen treu zu charakterisieren. Es misst die Reproduzierbarkeit, Konsistenz und Generalisierbarkeit der Verhaltensweisen der Modelle anhand psychologischer Theorien und Werkzeuge.

    Implikationen für die Modellierung und Anwendung

    Die Ergebnisse dieser Studien zeigen, dass eine einfache Anwendung psychologischer Werkzeuge möglicherweise nicht alle menschlichen Verhaltensweisen in Modellen treu charakterisieren kann. Es wird argumentiert, dass die Ausrichtung von Modellen an menschlichen und sozialen Werten notwendig ist, um die Schaffung von Modellen mit eingeschränkten Eigenschaften zu verhindern.

    Verknüpfung von kognitiven Architekturen mit Foundation Models

    Die Integration kognitiver Architekturen mit Foundation Models zur Unterstützung vertrauenswürdiger künstlicher Intelligenz ist ein weiteres spannendes Forschungsgebiet. Diese Integration ermöglicht es, kognitiv geführtes Few-Shot-Learning zu realisieren und so die Zuverlässigkeit und das Vertrauen in KI-Systeme zu erhöhen.

    Praktische Anwendungen

    Anwendungen dieser Forschung umfassen unter anderem die Entwicklung von Chatbots, Voicebots, KI-Suchmaschinen und Wissenssystemen. Solche Systeme können in verschiedenen Bereichen wie Bildung, Unterhaltung, Katastrophensituationen, Training und Therapien eingesetzt werden.

    Schlussfolgerung

    Die Forschung zur affektiven Kognition in Foundation Models zeigt vielversprechende Ergebnisse und deutet darauf hin, dass diese Modelle ein menschliches Verständnis von Emotionen erworben haben. Eine stärkere Integration von emotionsbezogenen Prozessen und die Anwendung psychologischer Theorien können dazu beitragen, die Entwicklung autonomer sozialer Maschinen voranzutreiben und das Verständnis menschlicher Emotionen zu vertiefen.

    Bibliographie

    - https://arxiv.org/abs/2009.14810 - https://www.sciencedirect.com/science/article/pii/S2666920X22000625 - https://openreview.net/forum?id=MxhTQC9AYV - https://academic.oup.com/pnasnexus/article/3/7/pgae233/7712372 - https://ojs.aaai.org/index.php/AAAI-SS/article/download/27708/27481/31759 - https://arxiv.org/abs/2311.16093 - https://publica.fraunhofer.de/bitstreams/7c84a2c4-e9a9-4c0b-aeb2-5ce1bc2f8f52/download - https://www.researchgate.net/publication/377603014_Integrating_Cognitive_Architectures_with_Foundation_Models_Cognitively-Guided_Few-Shot_Learning_to_Support_Trusted_Artificial_Intelligence - https://www.mdpi.com/2076-3417/11/22/10874 - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11100990/

    Artikel jetzt als Podcast anhören

    Kunden die uns vertrauen:
    Arise Health logoArise Health logoThe Paak logoThe Paak logoOE logo2020INC logoEphicient logo
    und viele weitere mehr!

    Bereit für den nächsten Schritt?

    Das Expertenteam von Mindverse freut sich darauf, Ihnen zu helfen.
    Herzlichen Dank! Deine Nachricht ist eingegangen!
    Oops! Du hast wohl was vergessen, versuche es nochmal.

    🚀 Neugierig auf Mindverse Studio?

    Lernen Sie in nur 30 Minuten kennen, wie Ihr Team mit KI mehr erreichen kann – live und persönlich.

    🚀 Demo jetzt buchen