Wähle deine bevorzugte Option:
für Einzelnutzer
für Teams und Unternehmen
Von der ersten Idee bis zur voll integrierten KI-Lösung – strukturiert, sicher und mit messbarem Erfolg
Wir analysieren Ihre Geschäftsprozesse und identifizieren konkrete Use Cases mit dem höchsten ROI-Potenzial.
✓ Messbare KPIs definiert
Vollständige Datenschutz-Analyse und Implementierung sicherer Datenverarbeitungsprozesse nach EU-Standards.
✓ 100% DSGVO-konform
Maßgeschneiderte Auswahl der optimalen KI-Lösung – von Azure OpenAI bis zu Open-Source-Alternativen.
✓ Beste Lösung für Ihren Fall
Schneller Proof of Concept mit nahtloser Integration in Ihre bestehende IT-Infrastruktur und Workflows.
✓ Ergebnisse in 4-6 Wochen
Unternehmensweiter Rollout mit umfassenden Schulungen für maximale Akzeptanz und Produktivität.
✓ Ihr Team wird KI-fit
Die Einbeziehung von Programmiercode in die Pre-Training-Datenmischung wird zunehmend zu einer weit verbreiteten Praxis, auch für Modelle, die nicht speziell für die Code-Generierung konzipiert sind. Diese Entwicklung hat in der KI-Community zu zahlreichen Diskussionen geführt, da Programmiercode einen erheblichen Einfluss auf die Leistung von Sprachmodellen hat. Doch welche genauen Auswirkungen hat der Einsatz von Code auf Aufgaben, die über die reine Code-Generierung hinausgehen?
Die Praxis, Programmiercode in das Pre-Training von großen Sprachmodellen (Large Language Models, LLMs) einzubeziehen, basiert auf der Annahme, dass Code-Daten die Fähigkeit der Modelle zur Generalisierung und deren Leistung auf verschiedenen Aufgaben verbessern können. Beispielsweise zeigte eine Untersuchung von @_akhaliq, dass die Einbeziehung von Code in das Pre-Training zu signifikanten Leistungssteigerungen in Bereichen wie natürlicher Sprachverarbeitung (NLP), Weltwissen und generativen Aufgaben führte.
Um die Auswirkungen von Code-Daten systematisch zu untersuchen, wurden umfangreiche Ablationsstudien durchgeführt. Dabei wurden Modelle mit verschiedenen Größen von 470 Millionen bis zu 2,8 Milliarden Parametern auf eine breite Palette von Aufgaben getestet, darunter:
Die Ergebnisse zeigen, dass die Einbeziehung von Code-Daten zu einer signifikanten Leistungssteigerung führt:
Ein weiterer wichtiger Aspekt der Datenmischung ist die Methode, mit der die optimale Mischung aus verschiedenen Datenquellen ermittelt wird. Hier kommt RegMix ins Spiel, eine Methode zur automatischen Datenmischung, die auf Regression basiert. RegMix wurde entwickelt, um die Leistung von Modellen durch eine optimierte Datenmischung zu verbessern und dabei nur einen geringen zusätzlichen Rechenaufwand zu erfordern.
RegMix behandelt die Auswahl der Datenmischung als ein Regressionsproblem und folgt dabei einem klaren Prozess:
Dieser Ansatz ermöglicht es, eine Vielzahl potenzieller Mischungen zu erkunden und dabei nur eine kleine Anzahl von Modellen zu trainieren.
Die Anwendung von RegMix führte zu beeindruckenden Ergebnissen. Die Methode konnte die beste Datenmischung vorhersagen und dabei die Leistung der Modelle signifikant verbessern. Die wichtigsten Erkenntnisse sind:
Die Einbeziehung von Programmiercode in das Pre-Training von Sprachmodellen zeigt deutliche Vorteile und bietet eine vielversprechende Möglichkeit, die Leistung von LLMs über eine Vielzahl von Aufgaben hinweg zu verbessern. Methoden wie RegMix bieten zudem einen effizienten Ansatz zur Optimierung der Datenmischung und tragen so zur weiteren Verbesserung der Modelle bei.
Lernen Sie in nur 30 Minuten kennen, wie Ihr Team mit KI mehr erreichen kann – live und persönlich.
🚀 Demo jetzt buchen