KI für Ihr Unternehmen – Jetzt Demo buchen

UniDet3D revolutioniert die 3D Objekterkennung durch Nutzung multipler Datensätze

Kategorien:
No items found.
Freigegeben:
September 11, 2024

KI sauber im Unternehmen integrieren: Der 5-Schritte-Plan

Von der ersten Idee bis zur voll integrierten KI-Lösung – strukturiert, sicher und mit messbarem Erfolg

1
🎯

Strategie & Zieldefinition

Wir analysieren Ihre Geschäftsprozesse und identifizieren konkrete Use Cases mit dem höchsten ROI-Potenzial.

✓ Messbare KPIs definiert

2
🛡️

Daten & DSGVO-Compliance

Vollständige Datenschutz-Analyse und Implementierung sicherer Datenverarbeitungsprozesse nach EU-Standards.

✓ 100% DSGVO-konform

3
⚙️

Technologie- & Tool-Auswahl

Maßgeschneiderte Auswahl der optimalen KI-Lösung – von Azure OpenAI bis zu Open-Source-Alternativen.

✓ Beste Lösung für Ihren Fall

4
🚀

Pilotprojekt & Integration

Schneller Proof of Concept mit nahtloser Integration in Ihre bestehende IT-Infrastruktur und Workflows.

✓ Ergebnisse in 4-6 Wochen

5
👥

Skalierung & Team-Schulung

Unternehmensweiter Rollout mit umfassenden Schulungen für maximale Akzeptanz und Produktivität.

✓ Ihr Team wird KI-fit

Inhaltsverzeichnis

    mindverse studio – Ihre Plattform für digitale Effizienz

    Optimieren Sie Prozesse, automatisieren Sie Workflows und fördern Sie Zusammenarbeit – alles an einem Ort.
    Mehr über Mindverse Studio erfahren
    Artikel

    Neue Fortschritte in der 3D-Objekterkennung: UniDet3D - Ein Multi-Dataset-Ansatz

    Einleitung

    Die Nachfrage nach intelligenten Lösungen in der Robotik und erweiterten Realität hat das Interesse an der 3D-Objekterkennung aus Punktwolken erheblich gesteigert. Doch die vorhandenen, einzeln betrachteten Indoor-Datensätze sind oft zu klein und nicht ausreichend divers, um ein leistungsstarkes und allgemeines Modell zur 3D-Objekterkennung zu trainieren. Gleichzeitig sind allgemeinere Ansätze, die Grundmodelle nutzen, in ihrer Qualität immer noch denjenigen, die auf überwachten Trainingsmethoden für spezifische Aufgaben basieren, unterlegen.

    Das UniDet3D-Modell

    In dieser Arbeit schlagen Maksim Kolodiazhnyi, Anna Vorontsova, Matvey Skripkin, Danila Rukhovich und Anton Konushin von der Artificial Intelligence Research Institute das UniDet3D-Modell vor. UniDet3D ist ein einfaches, aber effektives 3D-Objekterkennungsmodell, das auf einer Mischung von Indoor-Datensätzen trainiert wurde und in verschiedenen Innenraumumgebungen arbeiten kann. Durch die Vereinheitlichung unterschiedlicher Label-Räume ermöglicht UniDet3D das Erlernen einer starken Repräsentation über mehrere Datensätze hinweg mittels eines überwachten gemeinsamen Trainingsschemas.

    Technische Details und Architektur

    Die vorgeschlagene Netzwerkarchitektur basiert auf einem einfachen Transformer-Encoder, was die Ausführung, Anpassung und Erweiterung der Vorhersagepipeline für den praktischen Einsatz erleichtert. Diese Architektur ermöglicht es, die verschiedenen Datensätze zu integrieren und eine robuste Leistung zu erzielen, die in verschiedenen Indoor-Umgebungen getestet wurde.

    Experimentelle Ergebnisse

    Um die Leistungsfähigkeit von UniDet3D zu demonstrieren, wurden umfangreiche Experimente durchgeführt, die signifikante Verbesserungen gegenüber bestehenden 3D-Objekterkennungsmethoden in sechs Indoor-Benchmarks zeigten:

    - ScanNet (+1.1 mAP50) - ARKitScenes (+19.4 mAP25) - S3DIS (+9.1 mAP50) - MultiScan (+9.3 mAP50) - 3RScan (+3.2 mAP50) - ScanNet++ (+2.7 mAP50)

    Vorteile und Anwendungsmöglichkeiten

    Der Einsatz von UniDet3D bringt mehrere Vorteile mit sich:

    - **Verbesserte Leistung:** Die gemeinsame Nutzung mehrerer Datensätze ermöglicht es dem Modell, eine allgemeingültigere und robustere Repräsentation zu erlernen. - **Einfachheit und Anpassungsfähigkeit:** Die auf einem Transformer-Encoder basierende Architektur ist leicht zu implementieren und an verschiedene Anforderungen anzupassen. - **Vielseitigkeit:** Das Modell kann in verschiedenen Indoor-Umgebungen eingesetzt werden, was es vielseitig und breit anwendbar macht.

    Praktische Implikationen

    Die Fortschritte in der 3D-Objekterkennung haben bedeutende Implikationen für viele Bereiche wie Robotik, erweiterte Realität und autonome Systeme. Durch die Entwicklung eines Modells wie UniDet3D, das in der Lage ist, in verschiedenen Umgebungen genau zu arbeiten, können Anwendungen wie Indoor-Navigation, Objektverfolgung und Interaktion mit der Umgebung erheblich verbessert werden.

    Fazit

    Das UniDet3D-Modell stellt einen bedeutenden Fortschritt in der 3D-Objekterkennung dar, indem es die Einschränkungen bestehender Ansätze überwindet und eine robuste Leistung über mehrere Datensätze hinweg bietet. Mit seiner einfachen und anpassbaren Architektur hat es das Potenzial, in verschiedenen Industrien Anwendung zu finden und die Entwicklung intelligenter Systeme weiter voranzutreiben.

    Quellen

    - https://www.arxiv.org/abs/2409.04234 - https://github.com/filapro/unidet3d - https://paperreading.club/page?id=250314 - https://arxiv.org/abs/2303.06880 - https://www.chatpaper.com/chatpaper/fr/paper/57545 - https://paperswithcode.com/task/3d-object-detection - https://openaccess.thecvf.com/content/CVPR2023/papers/Zhang_Uni3D_A_Unified_Baseline_for_Multi-Dataset_3D_Object_Detection_CVPR_2023_paper.pdf - https://paperswithcode.com/task/3d-object-detection/latest - https://www.researchgate.net/publication/373319021_Uni3D_A_Unified_Baseline_for_Multi-Dataset_3D_Object_Detection - https://openaccess.thecvf.com/content/CVPR2024/papers/Li_UniMODE_Unified_Monocular_3D_Object_Detection_CVPR_2024_paper.pdf

    Artikel jetzt als Podcast anhören

    Kunden die uns vertrauen:
    Arise Health logoArise Health logoThe Paak logoThe Paak logoOE logo2020INC logoEphicient logo
    und viele weitere mehr!

    Bereit für den nächsten Schritt?

    Das Expertenteam von Mindverse freut sich darauf, Ihnen zu helfen.
    Herzlichen Dank! Deine Nachricht ist eingegangen!
    Oops! Du hast wohl was vergessen, versuche es nochmal.

    🚀 Neugierig auf Mindverse Studio?

    Lernen Sie in nur 30 Minuten kennen, wie Ihr Team mit KI mehr erreichen kann – live und persönlich.

    🚀 Demo jetzt buchen