KI für Ihr Unternehmen – Jetzt Demo buchen

Standardisierung der Forschung zu großen Sprachmodellen in wirtschaftlichen Spielen

Kategorien:
No items found.
Freigegeben:
October 10, 2024

KI sauber im Unternehmen integrieren: Der 5-Schritte-Plan

Von der ersten Idee bis zur voll integrierten KI-Lösung – strukturiert, sicher und mit messbarem Erfolg

1
🎯

Strategie & Zieldefinition

Wir analysieren Ihre Geschäftsprozesse und identifizieren konkrete Use Cases mit dem höchsten ROI-Potenzial.

✓ Messbare KPIs definiert

2
🛡️

Daten & DSGVO-Compliance

Vollständige Datenschutz-Analyse und Implementierung sicherer Datenverarbeitungsprozesse nach EU-Standards.

✓ 100% DSGVO-konform

3
⚙️

Technologie- & Tool-Auswahl

Maßgeschneiderte Auswahl der optimalen KI-Lösung – von Azure OpenAI bis zu Open-Source-Alternativen.

✓ Beste Lösung für Ihren Fall

4
🚀

Pilotprojekt & Integration

Schneller Proof of Concept mit nahtloser Integration in Ihre bestehende IT-Infrastruktur und Workflows.

✓ Ergebnisse in 4-6 Wochen

5
👥

Skalierung & Team-Schulung

Unternehmensweiter Rollout mit umfassenden Schulungen für maximale Akzeptanz und Produktivität.

✓ Ihr Team wird KI-fit

Inhaltsverzeichnis

    mindverse studio – Ihre Plattform für digitale Effizienz

    Optimieren Sie Prozesse, automatisieren Sie Workflows und fördern Sie Zusammenarbeit – alles an einem Ort.
    Mehr über Mindverse Studio erfahren

    Große Sprachmodelle in der Wirtschaft: Ein neuer Ansatz zur Standardisierung von Forschung

    Große Sprachmodelle (LLMs) zeigen ein beeindruckendes Potenzial in wirtschaftlichen und strategischen Interaktionen, bei denen Kommunikation über natürliche Sprache eine zentrale Rolle spielt. Dies wirft jedoch auch wichtige Fragen auf: Verhalten sich LLMs rational? Können sie menschliches Verhalten nachahmen? Führen sie zu effizienten und fairen Ergebnissen? Welche Rolle spielt die natürliche Sprache in der strategischen Interaktion? Und wie beeinflussen die Merkmale des wirtschaftlichen Umfelds diese Dynamik?

    Diese Fragen gewinnen vor dem Hintergrund der wirtschaftlichen und gesellschaftlichen Auswirkungen an Bedeutung, die die Integration von LLM-basierten Agenten in reale datengesteuerte Systeme, wie z. B. Online-Handelsplattformen und Empfehlungssysteme, mit sich bringt. Obwohl die Machine-Learning-Community das Potenzial von LLMs in solchen Multi-Agenten-Systemen bereits untersucht, erschweren unterschiedliche Annahmen, Designentscheidungen und Bewertungskriterien in den verschiedenen Studien das Ziehen robuster und aussagekräftiger Schlussfolgerungen.

    Ein neuer Benchmark für sprachbasierte Spiele

    Um dem entgegenzuwirken, wurde ein neuer Benchmark für die Standardisierung der Forschung zu sequenziellen, sprachbasierten Spielen mit zwei Spielern entwickelt. Inspiriert von der wirtschaftswissenschaftlichen Literatur definiert der Benchmark drei grundlegende Familien von Spielen mit einheitlicher Parametrisierung, Freiheitsgraden und ökonomischen Kennzahlen. Diese Kennzahlen dienen dazu, sowohl die Leistung der Agenten (Eigennutz) als auch das Spielergebnis (Effizienz und Fairness) zu bewerten.

    Die drei Spielfamilien sind:

    - Verhandlungsspiele - Nachverhandlungsspiele - Überzeugungsspiele

    Jedes dieser Spiele ist durch spezifische Regeln und Parameter definiert, die verschiedene wirtschaftliche Szenarien abbilden. So können beispielsweise in Verhandlungsspielen Parameter wie die Anzahl der Runden, die Höhe des zu verteilenden Gewinns oder die Geduld der Spieler variiert werden.

    Ein Open-Source-Framework für Simulation und Analyse

    Ergänzend zum Benchmark wurde ein Open-Source-Framework für die Simulation und Analyse von Interaktionen in diesen Spielen entwickelt. Das Framework ermöglicht es Forschern, Experimente mit verschiedenen LLM-basierten Agenten durchzuführen und deren Verhalten in unterschiedlichen Spielkonfigurationen zu untersuchen.

    Mithilfe des Frameworks wurde ein umfangreicher Datensatz von LLM-gegen-LLM-Interaktionen in verschiedenen Spielkonfigurationen sowie ein Datensatz von Mensch-gegen-LLM-Interaktionen erstellt. Diese Datensätze stehen der Forschungsgemeinschaft zur Verfügung und können für weitere Untersuchungen genutzt werden.

    Anwendungsmöglichkeiten des Frameworks

    Die Entwickler des Frameworks und des Benchmarks zeigen anhand von Experimenten, wie diese Werkzeuge eingesetzt werden können, um:

    1. das Verhalten von LLM-basierten Agenten mit dem von menschlichen Spielern in verschiedenen wirtschaftlichen Kontexten zu vergleichen; 2. Agenten sowohl anhand individueller als auch kollektiver Leistungskennzahlen zu bewerten; 3. die Auswirkungen der wirtschaftlichen Eigenschaften der Umgebungen auf das Verhalten von Agenten zu quantifizieren.

    Schlussfolgerung und Ausblick

    Der vorgestellte Benchmark und das Framework stellen einen wichtigen Schritt zur Standardisierung der Forschung zu LLM-basierten Agenten in sprachbasierten Spielen dar. Sie bieten Forschern die Möglichkeit, Experimente unter einheitlichen Bedingungen durchzuführen und die Ergebnisse verschiedener Studien besser miteinander zu vergleichen.

    Die gewonnenen Erkenntnisse tragen dazu bei, das Verhalten von LLMs in strategischen Interaktionen besser zu verstehen und die Entwicklung von robusteren und zuverlässigeren LLM-basierten Agenten für reale Anwendungen zu fördern. Darüber hinaus können die Ergebnisse dazu beitragen, die Gestaltung zukünftiger KI-Systeme zu verbessern und ihre Auswirkungen auf Wirtschaft und Gesellschaft besser abzuschätzen.

    Bibliographie

    - http://arxiv.org/abs/2410.05254 - https://arxiv.org/html/2410.05254 - https://deeplearn.org/arxiv/533519/glee:-a-unified-framework-and-benchmark-for-language-based-economic-environments - https://twitter.com/econ_cs/status/1843502084408139917 - https://arxiv-sanity-lite.com/ - https://www.chatpaper.com/chatpaper/?id=3&date=1728316800&page=1 - https://arxiv-sanity-lite.com/?rank=pid&pid=2410.05254 - https://chatpaper.com/chatpaper/de?id=3&date=1728316800&page=1 - https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf

    Artikel jetzt als Podcast anhören

    Kunden die uns vertrauen:
    Arise Health logoArise Health logoThe Paak logoThe Paak logoOE logo2020INC logoEphicient logo
    und viele weitere mehr!

    Bereit für den nächsten Schritt?

    Das Expertenteam von Mindverse freut sich darauf, Ihnen zu helfen.
    Herzlichen Dank! Deine Nachricht ist eingegangen!
    Oops! Du hast wohl was vergessen, versuche es nochmal.

    🚀 Neugierig auf Mindverse Studio?

    Lernen Sie in nur 30 Minuten kennen, wie Ihr Team mit KI mehr erreichen kann – live und persönlich.

    🚀 Demo jetzt buchen