KI für Ihr Unternehmen – Jetzt Demo buchen

Meta präsentiert Llama 3: Neuer Standard in der Open-Source-KI-Forschung

Kategorien:
No items found.
Freigegeben:
August 30, 2024

KI sauber im Unternehmen integrieren: Der 5-Schritte-Plan

Von der ersten Idee bis zur voll integrierten KI-Lösung – strukturiert, sicher und mit messbarem Erfolg

1
🎯

Strategie & Zieldefinition

Wir analysieren Ihre Geschäftsprozesse und identifizieren konkrete Use Cases mit dem höchsten ROI-Potenzial.

✓ Messbare KPIs definiert

2
🛡️

Daten & DSGVO-Compliance

Vollständige Datenschutz-Analyse und Implementierung sicherer Datenverarbeitungsprozesse nach EU-Standards.

✓ 100% DSGVO-konform

3
⚙️

Technologie- & Tool-Auswahl

Maßgeschneiderte Auswahl der optimalen KI-Lösung – von Azure OpenAI bis zu Open-Source-Alternativen.

✓ Beste Lösung für Ihren Fall

4
🚀

Pilotprojekt & Integration

Schneller Proof of Concept mit nahtloser Integration in Ihre bestehende IT-Infrastruktur und Workflows.

✓ Ergebnisse in 4-6 Wochen

5
👥

Skalierung & Team-Schulung

Unternehmensweiter Rollout mit umfassenden Schulungen für maximale Akzeptanz und Produktivität.

✓ Ihr Team wird KI-fit

Inhaltsverzeichnis

    mindverse studio – Ihre Plattform für digitale Effizienz

    Optimieren Sie Prozesse, automatisieren Sie Workflows und fördern Sie Zusammenarbeit – alles an einem Ort.
    Mehr über Mindverse Studio erfahren
    Neutraler Artikel über Meta's Llama 3

    Meta's Llama 3: Ein Meilenstein in der Entwicklung von Open-Source-KI

    Einführung

    Meta hat kürzlich die neueste Version seines KI-Modells Llama 3 veröffentlicht. Dieses Ereignis wird als ein bedeutender Schritt in der Welt der Open-Source-Künstlichen Intelligenz betrachtet. Das Modell ist in verschiedenen Größen verfügbar, darunter 8B und 70B Parameter, und es wird ein noch größeres Modell mit über 400B Parametern erwartet. Llama 3 wurde auf einer beeindruckenden Datenmenge von 15T Tokens trainiert und nutzt einen 128K Vokabular-Tokenizer sowie ein Kontextfenster von 8K.

    Technische Details und Leistung

    Llama 3 wurde mit modernsten Techniken wie Supervised Fine Tuning (SFT), Proximal Policy Optimization (PPO) und Direct Preference Optimization (DPO) auf 10 Millionen Beispielen feinabgestimmt. Angesichts dieser Verbesserungen wird Llama 3 70B als ein Modell angesehen, das fast das Leistungsniveau von GPT-4 erreicht. Laut dem bekannten KI-Forscher Andrej Karpathy nähert sich Llama 3 70B auf Benchmark-Tests wie MMLU (Massive Multitask Language Understanding) dem Leistungsniveau von GPT-4.

    Verfügbarkeit und Skalierung

    Die Modelle von Llama 3 sind auf verschiedenen Plattformen wie Huggingface, Together Compute, AWS Cloud und Google Cloud verfügbar. Dank der 4-Bit-Quantisierung können die 8B-Modelle sogar auf Verbrauchshardware ausgeführt werden. Karpathy schätzte, dass das Training des 8B-Modells etwa 1,3 Millionen A100-Stunden und das des 70B-Modells etwa 6,4 Millionen A100-Stunden in Anspruch nahm.

    Reaktionen und Auswirkungen

    Die Veröffentlichung von Llama 3 wurde in der KI-Community als ein Wendepunkt für Open-Source-KI gefeiert. Viele Experten, darunter Bindu Reddy und andere, sagten voraus, dass Open-Source-Modelle bald das Leistungsniveau von GPT-4 erreichen könnten. Andere, wie Abacus AI-Mitbegründer Arvind Neelakantan, bemerkten, dass dies die Kosten für KI-Technologie senken könnte, da Menschen die Laufzeiten und Destillation optimieren. Einige spekulierten auch, dass dies das Geschäftsmodell von OpenAI herausfordern könnte.

    Technische Diskussionen

    Diskussionen in der KI-Community drehten sich um Themen wie das Finetuning von Anweisungen und die Frage, ob das Training von Modellen weit über die optimalen Verhältnisse hinaus leistungsstarke Modelle in größenmäßig effizienten Inferenzgrößen hervorbringen könnte. Der verbesserte 128K-Tokenizer von Llama 3 wurde als bedeutend für die Effizienz, insbesondere für mehrsprachige Daten, angesehen.

    Herausforderungen und Lösungen

    Das Finetuning von Llama 3 stellte einige Herausforderungen dar, insbesondere aufgrund eines fehlenden BOS-Tokens, der während des Trainings hohe Verluste verursachte. Ein Fix wurde jedoch durch ein PR in der Tokenizer-Konfiguration geteilt. Die Diskussionen über die Effizienz und Notwendigkeit des umfangreichen Token-Vokabulars nahmen in der Community ebenfalls breiten Raum ein.

    Vergleich mit anderen Modellen

    Im Vergleich zu anderen Modellen wie GPT-4 und Claude zeigte Llama 3 70B gute Ergebnisse in Benchmarks, konnte jedoch das Leistungsniveau von GPT-4 Turbo nicht ganz erreichen. Der kürzlich veröffentlichte FineWeb-Datensatz mit 15 Billionen Tokens bietet jedoch Potenzial, bestehende Datensätze wie RefinedWeb und The Pile zu übertreffen.

    Neue Werkzeuge und Rahmenwerke

    Mehrere neue Werkzeuge und Rahmenwerke wurden in der Community diskutiert, darunter Hydra von Facebook Research zur Konfiguration komplexer Anwendungen und LiteLLM als Vorlage für LLM-Projekte. Der Prompt Mixer für kollaboratives Prompt-Engineering und das Knowledge Graph SDK von WhyHow.AI für schema-gesteuerte automatisierte Wissensgraphen wurden ebenfalls hervorgehoben.

    Fortschritte in der Retrieval-Augmented Generation (RAG)

    Entwicklungen in der Retrieval-Augmented Generation (RAG) waren ebenfalls ein heißes Thema. Ein neuer Benchmark wurde vorgeschlagen, um RAG-Modelle zu bewerten. Es gab auch eine Anleitung zum Bau eines RAG-Chatbots mit Llama 3 und ein Tutorial zur Mietwohnungssuche mit dem Self-Querying Retriever von LangChain.

    Reinforcement Learning from Human Feedback (RLHF) Einblicke

    Ein neues Papier mit dem Titel „From $r$ to $Q^*$: Your Language Model is Secretly a Q-Function“ verglich traditionelle RLHF-Methoden mit Direct Preference Optimization (DPO) und zeigte, wie DPO die Bellman-Gleichung erfüllt.

    Optimierung von Transformator-Modellen

    Techniken zur Optimierung von Transformator-Modellen wurden ebenfalls diskutiert, darunter die Annäherung an Aufmerksamkeitsmechanismen zur Komprimierung der Token-Länge während der Inferenz und die dynamische Zuweisung von FLOPs.

    Ethische Überlegungen und rechtliche Implikationen

    Gespräche drehten sich auch um die ethischen Implikationen von KI-„Jailbreaks“ und deren mögliche Auswirkungen auf die Sicherheit. Diese Diskussionen betonten die Notwendigkeit, Ethik und Sicherheit bei der Entwicklung und Implementierung von KI-Modellen zu berücksichtigen.

    Schlussfolgerung

    Die Veröffentlichung von Llama 3 durch Meta markiert einen bedeutenden Fortschritt in der Welt der Open-Source-KI. Mit beeindruckenden technischen Spezifikationen, breiter Verfügbarkeit und positiven Reaktionen aus der Community bietet Llama 3 das Potenzial, die Landschaft der KI-Entwicklung nachhaltig zu verändern. Die fortlaufenden Diskussionen und Entwicklungen in der KI-Community werden zweifellos dazu beitragen, die Zukunft der Open-Source-KI weiter zu formen und zu gestalten.

    Bibliographie

    - https://twitter.com/mr_meester - https://buttondown.com/ainews/archive/ainews-fineweb-15t-tokens-of-commoncrawl/ - https://www.linkedin.com/posts/ziaulkamal_open-source-ai-what-about-data-transparency-activity-7216844287324356609-xMeB - https://twitter.com/barban74 - https://www.linkedin.com/posts/docgotham_open-letter-to-president-biden-regarding-activity-7126320729322614784-YoFc

    Artikel jetzt als Podcast anhören

    Kunden die uns vertrauen:
    Arise Health logoArise Health logoThe Paak logoThe Paak logoOE logo2020INC logoEphicient logo
    und viele weitere mehr!

    Bereit für den nächsten Schritt?

    Das Expertenteam von Mindverse freut sich darauf, Ihnen zu helfen.
    Herzlichen Dank! Deine Nachricht ist eingegangen!
    Oops! Du hast wohl was vergessen, versuche es nochmal.

    🚀 Neugierig auf Mindverse Studio?

    Lernen Sie in nur 30 Minuten kennen, wie Ihr Team mit KI mehr erreichen kann – live und persönlich.

    🚀 Demo jetzt buchen