KI für Ihr Unternehmen – Jetzt Demo buchen

Ferret und die Evolution der automatisierten Red-Teaming-Verfahren in der KI-Sicherheit

Kategorien:
No items found.
Freigegeben:
August 27, 2024

KI sauber im Unternehmen integrieren: Der 5-Schritte-Plan

Von der ersten Idee bis zur voll integrierten KI-Lösung – strukturiert, sicher und mit messbarem Erfolg

1
🎯

Strategie & Zieldefinition

Wir analysieren Ihre Geschäftsprozesse und identifizieren konkrete Use Cases mit dem höchsten ROI-Potenzial.

✓ Messbare KPIs definiert

2
🛡️

Daten & DSGVO-Compliance

Vollständige Datenschutz-Analyse und Implementierung sicherer Datenverarbeitungsprozesse nach EU-Standards.

✓ 100% DSGVO-konform

3
⚙️

Technologie- & Tool-Auswahl

Maßgeschneiderte Auswahl der optimalen KI-Lösung – von Azure OpenAI bis zu Open-Source-Alternativen.

✓ Beste Lösung für Ihren Fall

4
🚀

Pilotprojekt & Integration

Schneller Proof of Concept mit nahtloser Integration in Ihre bestehende IT-Infrastruktur und Workflows.

✓ Ergebnisse in 4-6 Wochen

5
👥

Skalierung & Team-Schulung

Unternehmensweiter Rollout mit umfassenden Schulungen für maximale Akzeptanz und Produktivität.

✓ Ihr Team wird KI-fit

Inhaltsverzeichnis

    mindverse studio – Ihre Plattform für digitale Effizienz

    Optimieren Sie Prozesse, automatisieren Sie Workflows und fördern Sie Zusammenarbeit – alles an einem Ort.
    Mehr über Mindverse Studio erfahren

    Einführung in Ferret: Eine Neue Ära der Automatisierten Red-Teaming-Techniken

    Die Bedeutung von Red-Teaming für Künstliche Intelligenz

    In der heutigen Zeit, in der große Sprachmodelle (Large Language Models, LLMs) in zahlreichen realen Anwendungen integriert sind, ist die Gewährleistung ihrer Sicherheit und Robustheit von entscheidender Bedeutung für den verantwortungsvollen Einsatz von Künstlicher Intelligenz (KI). Automatisierte Red-Teaming-Methoden spielen eine Schlüsselrolle in diesem Prozess, indem sie adversariale Angriffe generieren, um potenzielle Schwachstellen in diesen Modellen zu identifizieren und zu mindern.

    Herausforderungen Bestehender Methoden

    Bestehende Methoden des automatisierten Red-Teaming haben oft mit langsamer Leistung, begrenzter kategorialer Vielfalt und hohen Ressourcenanforderungen zu kämpfen. Während der kürzlich eingeführte Ansatz "Rainbow Teaming" die Herausforderung der Vielfalt durch die Rahmung der adversarialen Prompt-Generierung als Qualitäts-Diversitäts-Suche angeht, bleibt er dennoch langsam und erfordert einen großen, fein abgestimmten Mutator für optimale Leistung.

    Vorstellung von Ferret: Ein Neuer Ansatz

    Um diese Einschränkungen zu überwinden, wurde Ferret entwickelt. Dieser neuartige Ansatz baut auf Rainbow Teaming auf, indem er pro Iteration mehrere Mutationen adversarialer Prompts generiert und eine Bewertungsfunktion verwendet, um die effektivsten adversarialen Prompts auszuwählen und zu bewerten. Verschiedene Bewertungsfunktionen, einschließlich Belohnungsmodellen, Llama Guard und LLM-as-a-judge, werden untersucht, um adversariale Mutationen basierend auf ihrem potenziellen Schaden zu bewerten und so die Effizienz der Suche nach schädlichen Mutationen zu verbessern.

    Ergebnisse und Vorteile von Ferret

    Unsere Ergebnisse zeigen, dass Ferret, unter Verwendung eines Belohnungsmodells als Bewertungsfunktion, die Gesamtangriffserfolgsrate (Attack Success Rate, ASR) auf 95% verbessert, was 46% höher ist als bei Rainbow Teaming. Ferret reduziert auch die benötigte Zeit, um eine 90% ASR zu erreichen, um 15,2% im Vergleich zur Baseline und generiert adversariale Prompts, die übertragbar sind, d.h. auch bei anderen größeren LLMs effektiv sind.

    Technische Details und Implementierung

    Ferret generiert in jeder Iteration mehrere Mutationen von adversarialen Prompts und verwendet anschließend eine Bewertungsfunktion, um die effektivsten zu identifizieren. Die Bewertungsfunktion kann auf verschiedene Weisen implementiert werden, einschließlich: - Belohnungsmodelle - Llama Guard - LLM-as-a-judge Diese Bewertungsfunktionen bewerten die adversarialen Mutationen basierend auf ihrem potenziellen Schaden und verbessern so die Effizienz der Suche nach schädlichen Mutationen.

    Vergleich mit Rainbow Teaming

    Im Vergleich zu Rainbow Teaming bietet Ferret mehrere Vorteile: - Schnellere Leistung - Höhere Angriffserfolgsrate - Geringere Ressourcenanforderungen Rainbow Teaming bleibt jedoch ein wichtiger Meilenstein in der Entwicklung von Red-Teaming-Methoden und legte den Grundstein für die Weiterentwicklung durch Ferret.

    Anwendungsfälle und Zukünftige Entwicklungen

    Ferret kann in einer Vielzahl von Anwendungen eingesetzt werden, einschließlich: - Sicherheitsüberprüfung von KI-Modellen - Entwickeln robusterer LLMs - Identifizieren und Beheben von Schwachstellen in bestehenden Modellen In Zukunft könnten weitere Verbesserungen und Erweiterungen von Ferret entwickelt werden, um noch effizientere und robustere Red-Teaming-Methoden zu schaffen.

    Fazit

    Ferret stellt einen bedeutenden Fortschritt in der automatisierten Red-Teaming-Technik dar, indem es die Effizienz und Effektivität adversarialer Angriffe verbessert. Durch den Einsatz modernster Bewertungsfunktionen und die Generierung übertragbarer adversarialer Prompts trägt Ferret wesentlich zur Sicherheit und Robustheit großer Sprachmodelle bei.

    Bibliographie

    - arxiv.org/abs/2408.10701 - arxiv.org/html/2405.18540v1 - www.researchgate.net/publication/382251944_ASTPrompter_Weakly_Supervised_Automated_Language_Model_Red-Teaming_to_Identify_Likely_Toxic_Prompts - fairxiv.org/search?q=Zifan+Wang - aclanthology.org/2024.privatenlp-1.pdf - aclanthology.org/2024.bionlp-1.pdf - www.icar.org/wp-content/uploads/2015/09/tec_series_14_Riga.pdf

    Artikel jetzt als Podcast anhören

    Kunden die uns vertrauen:
    Arise Health logoArise Health logoThe Paak logoThe Paak logoOE logo2020INC logoEphicient logo
    und viele weitere mehr!

    Bereit für den nächsten Schritt?

    Das Expertenteam von Mindverse freut sich darauf, Ihnen zu helfen.
    Herzlichen Dank! Deine Nachricht ist eingegangen!
    Oops! Du hast wohl was vergessen, versuche es nochmal.

    🚀 Neugierig auf Mindverse Studio?

    Lernen Sie in nur 30 Minuten kennen, wie Ihr Team mit KI mehr erreichen kann – live und persönlich.

    🚀 Demo jetzt buchen