KI für Ihr Unternehmen – Jetzt Demo buchen

Erweiterung automatisierter Beweisverfahren durch symbolische Mutation

Kategorien:
No items found.
Freigegeben:
October 22, 2024

KI sauber im Unternehmen integrieren: Der 5-Schritte-Plan

Von der ersten Idee bis zur voll integrierten KI-Lösung – strukturiert, sicher und mit messbarem Erfolg

1
🎯

Strategie & Zieldefinition

Wir analysieren Ihre Geschäftsprozesse und identifizieren konkrete Use Cases mit dem höchsten ROI-Potenzial.

✓ Messbare KPIs definiert

2
🛡️

Daten & DSGVO-Compliance

Vollständige Datenschutz-Analyse und Implementierung sicherer Datenverarbeitungsprozesse nach EU-Standards.

✓ 100% DSGVO-konform

3
⚙️

Technologie- & Tool-Auswahl

Maßgeschneiderte Auswahl der optimalen KI-Lösung – von Azure OpenAI bis zu Open-Source-Alternativen.

✓ Beste Lösung für Ihren Fall

4
🚀

Pilotprojekt & Integration

Schneller Proof of Concept mit nahtloser Integration in Ihre bestehende IT-Infrastruktur und Workflows.

✓ Ergebnisse in 4-6 Wochen

5
👥

Skalierung & Team-Schulung

Unternehmensweiter Rollout mit umfassenden Schulungen für maximale Akzeptanz und Produktivität.

✓ Ihr Team wird KI-fit

Inhaltsverzeichnis

    mindverse studio – Ihre Plattform für digitale Effizienz

    Optimieren Sie Prozesse, automatisieren Sie Workflows und fördern Sie Zusammenarbeit – alles an einem Ort.
    Mehr über Mindverse Studio erfahren

    Die Erweiterung der Fähigkeiten des automatischen Beweisens durch symbolische Mutation

    In der Welt der Mathematik und Informatik ist das Beweisen von Theoremen ein komplexer und herausfordernder Prozess. Selbst für erfahrene Experten kann es zeitaufwendig und fehleranfällig sein, formale Beweise zu erstellen. Die jüngsten Fortschritte im Bereich des neuronalen Beweisens (NTP) haben jedoch vielversprechend gezeigt, dass dieser Prozess beschleunigt werden kann.

    NTP-Modelle basieren auf künstlicher Intelligenz (KI) und maschinellem Lernen und zielen darauf ab, mathematische Theoreme automatisch zu beweisen. Diese Modelle werden mit großen Datensätzen formaler Beweise trainiert und lernen, Muster und Regeln in mathematischen Argumenten zu erkennen. Trotz vielversprechender Ergebnisse stehen NTP-Modelle vor einer Herausforderung: der Datenknappheit. Im Vergleich zu allgemeinen Textdaten sind die verfügbaren formalen Korpora im Internet begrenzt.

    Alchemy: Ein neuer Ansatz zur Datenaugmentation

    Um diese Herausforderung zu bewältigen, haben Forscher ein neues Framework namens "Alchemy" entwickelt. Alchemy ist ein allgemeiner Ansatz zur Datensynthese, der formale Theoreme durch symbolische Mutation konstruiert. Das bedeutet, dass Alchemy bestehende Theoreme nutzt, um neue, gültige Theoreme zu generieren.

    Der Prozess beginnt mit der Identifizierung aller anwendbaren Theoreme, die zum Umschreiben oder Anwenden auf ein gegebenes Kandidatentheorem verwendet werden können. Anschließend mutiert Alchemy das Kandidatentheorem, indem der entsprechende Term in der Aussage durch seine äquivalente Form oder Antezedens ersetzt wird. Dieser Prozess kann wiederholt werden, um eine große Anzahl neuer Theoreme zu generieren.

    Verbesserung der Leistung von Theorembeweisern

    Alchemy wurde verwendet, um die Anzahl der Theoreme in Mathlib, einer Bibliothek für formale Beweise, deutlich zu erhöhen. Durch die Anwendung von Alchemy konnte die Anzahl der Theoreme in Mathlib um eine Größenordnung von 110.000 auf 6 Millionen erhöht werden.

    Um die Leistung von Theorembeweisern zu verbessern, wurden große Sprachmodelle (LLMs) mit diesem erweiterten Korpus trainiert. Die Ergebnisse zeigten eine deutliche Verbesserung der Leistung. Beispielsweise wurde beim Leandojo-Benchmark eine absolute Leistungsverbesserung von 5 % erzielt. Darüber hinaus wurde beim Out-of-Distribution-Benchmark miniF2F eine absolute Leistungsverbesserung von 2,5 % erreicht.

    Schlussfolgerung

    Alchemy bietet einen vielversprechenden Ansatz zur Bewältigung der Datenknappheit im Bereich des neuronalen Beweisens. Durch die Generierung synthetischer Daten kann Alchemy die Leistung von Theorembeweisern verbessern und den Weg für Fortschritte in der automatisierten mathematischen Argumentation ebnen.

    Die Forschungsergebnisse zu Alchemy und seiner Anwendung im neuronalen Beweisen wurden in einem wissenschaftlichen Artikel veröffentlicht, der auf arXiv verfügbar ist.

    Bibliographie

    Penrose, R. (1991). The Emperor’s New Mind: Concerning Computers, Minds, and the Laws of Physics. Penguin Books. Ladyman, J. (2007). Understanding Philosophy of Science. Routledge. B. Linsky, "Is Transmutation Possible?" Philosophical Studies, vol. 42, no. 3, pp. 387–390, 1982. I. Lakicevic, "Transmutation," Faculty Brat, 2020.

    Artikel jetzt als Podcast anhören

    Kunden die uns vertrauen:
    Arise Health logoArise Health logoThe Paak logoThe Paak logoOE logo2020INC logoEphicient logo
    und viele weitere mehr!

    Bereit für den nächsten Schritt?

    Das Expertenteam von Mindverse freut sich darauf, Ihnen zu helfen.
    Herzlichen Dank! Deine Nachricht ist eingegangen!
    Oops! Du hast wohl was vergessen, versuche es nochmal.

    🚀 Neugierig auf Mindverse Studio?

    Lernen Sie in nur 30 Minuten kennen, wie Ihr Team mit KI mehr erreichen kann – live und persönlich.

    🚀 Demo jetzt buchen